A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage applications

Nanostructured materials such as nanocomposites and nanolaminates are currently of intense interest in modern materials research. Nanolaminate materials are fully dense, ultra-fine grained solids that exhibit a high concentration of interface defects. They may be developed for engineering applications that take advantage of enhanced mechanical properties or for devices such as energy storage and memory storage capacitors. Nanolaminates can be grown using atom-by-atom deposition techniques that are designed with different stacking sequences and layer thicknesses. The properties of fabricated nanolaminates depend on their compositions and thicknesses. These can be demonstrated within the synthesis process by thickness control of each layer and interfacial chemical reaction between layers. In fact, dielectrics with the formed thin layer have efficient dielectric constant and high insulation characteristics. Dielectric materials with giant dielectric constants can be fabricated as modified single, binary and perovskite oxides. A review of the advantages offered by nanolaminate structures for high performance energy storage devices is presented. Developments of dielectric materials that are formed from a thin layer approach are evaluated. The influence of the interface layer on the dielectric constant of nanolaminate films is assessed from the perspective of conferring a giant dielectric constant and high insulation characteristics. The incorporation of dopants and site-engineering techniques, as well as layer-by-layer structures, which can both be suitable for improving dielectric properties of dielectric nanolaminates, is detailed. Finally, the current status and development of artificial dielectric materials for high performance energy storage devices formed by dielectric nanolaminates are presented.

[1]  O. Auciello,et al.  Interface-controlled high dielectric constant Al2O3/TiOx nanolaminates with low loss and low leakage current density for new generation nanodevices , 2013 .

[2]  G. M. Rao,et al.  Composition, structure and electrical properties of DC reactive magnetron sputtered Al2O3 thin films , 2013 .

[3]  Yidong Xia,et al.  Impact of the interfaces in the charge trap layer on the storage characteristics of ZrO2/Al2O3 nanolaminate-based charge trap flash memory cells , 2013 .

[4]  Andreas Fissel,et al.  Improving dielectric properties of epitaxial Gd2O3 thin films on silicon by nitrogen doping , 2013 .

[5]  Zhenghong Lu,et al.  Metal/Metal‐Oxide Interfaces: How Metal Contacts Affect the Work Function and Band Structure of MoO3 , 2013 .

[6]  C. Mahata,et al.  Degradation analysis and characterization of multifilamentary conduction patterns in high-field stressed atomic-layer-deposited TiO2/Al2O3 nanolaminates on GaAs , 2012 .

[7]  E. Guziewicz,et al.  ALD grown zinc oxide with controllable electrical properties , 2012, 1308.2064.

[8]  C. Aita,et al.  Addendum to “Phase selection and transition in Hf-rich hafnia-titania nanolaminates” (on SiO2) [J. Appl. Phys. 109, 123523 (2011)]: Hafnon formation , 2012 .

[9]  Hilmar Koerner,et al.  Nanolaminates: increasing dielectric breakdown strength of composites. , 2012, ACS applied materials & interfaces.

[10]  I. Yun,et al.  Effects of the interfacial layer on electrical characteristics of Al2O3/TiO2/Al2O3 thin films for gate dielectrics , 2012 .

[11]  Minoru Osada,et al.  Two‐Dimensional Dielectric Nanosheets: Novel Nanoelectronics From Nanocrystal Building Blocks , 2012, Advanced materials.

[12]  C. Wolden,et al.  Dielectric performance of hybrid alumina-silicone nanolaminates synthesized by plasma enhanced chemical vapor deposition , 2011 .

[13]  O. Auciello,et al.  Controllable giant dielectric constant in AlOx/TiOy nanolaminates , 2011 .

[14]  C. S. Tan,et al.  Comparison between chemical vapor deposited and physical vapor deposited WSi2 metal gate for InGaAs n-metal-oxide-semiconductor field-effect transistors , 2011 .

[15]  I. Petrov,et al.  Electronic structure of the SiN x /TiN interface: A model system for superhard nanocomposites , 2011 .

[16]  G. Brennecka,et al.  Processing Technologies for High Permittivity Thin Films in Capacitor Applications. , 2010 .

[17]  R. Ma,et al.  Nanosheets of Oxides and Hydroxides: Ultimate 2D Charge‐Bearing Functional Crystallites , 2010, Advanced materials.

[18]  Marianna Kemell,et al.  Investigation of ZrO2 – Gd2O3 Based High-k Materials as Capacitor Dielectrics , 2010 .

[19]  M. Osada,et al.  Robust high-κ response in molecularly thin perovskite nanosheets. , 2010, ACS nano.

[20]  Sang Woon Lee,et al.  Capacitors with an Equivalent Oxide Thickness of <0.5 nm for Nanoscale Electronic Semiconductor Memory , 2010 .

[21]  J. Bartha,et al.  Electrical characterisation of HfYO MIM-structures deposited by ALD , 2010 .

[22]  Wei Li,et al.  Giant dielectric constant dominated by Maxwell–Wagner relaxation in Al2O3/TiO2 nanolaminates synthesized by atomic layer deposition , 2010 .

[23]  Mikko Ritala,et al.  Atomic layer deposition of high capacitance density Ta2O5-ZrO2 based dielectrics for metal-insulator-metal structures , 2010 .

[24]  A. Facchetti,et al.  High-k organic, inorganic, and hybrid dielectrics for low-voltage organic field-effect transistors. , 2010, Chemical reviews.

[25]  P. Panjan,et al.  Simulation of a multilayer structure in coatings prepared by magnetron sputtering , 2009 .

[26]  H. Ploehn,et al.  Polymer Composite and Nanocomposite Dielectric Materials for Pulse Power Energy Storage † , 2009, Materials.

[27]  Ming-Jen Pan,et al.  High energy density nanocomposites based on surface-modified BaTiO(3) and a ferroelectric polymer. , 2009, ACS nano.

[28]  M. Osada,et al.  Exfoliated oxide nanosheets: new solution to nanoelectronics , 2009 .

[29]  Mikko Heikkilä,et al.  Atomic Layer Deposition of High‐k Oxides of the Group 4 Metals for Memory Applications , 2009 .

[30]  H. Ploehn,et al.  New Layered Mixed Metal Phosphonates for High Dielectric−Polymer Composite Materials , 2009 .

[31]  Sang Il Seok,et al.  Nanocomposites of Ferroelectric Polymers with TiO2 Nanoparticles Exhibiting Significantly Enhanced Electrical Energy Density , 2009 .

[32]  Bernard Kippelen,et al.  Solution-processible high-permittivity nanocomposite gate insulators for organic field-effect transistors , 2008 .

[33]  Y. Zhou,et al.  Nanocavity strengthening: Impact of the broken bonds at the negatively curved surfaces , 2008 .

[34]  K. Kukli,et al.  Electrical characterization of AlxTiyOz mixtures and Al2O3–TiO2–Al2O3 nanolaminates , 2007 .

[35]  Mato Knez,et al.  Synthesis and Surface Engineering of Complex Nanostructures by Atomic Layer Deposition , 2007 .

[36]  P. Gonon,et al.  Experimental evidence for the role of electrodes and oxygen vacancies in voltage nonlinearities observed in high-k metal-insulator-metal capacitors , 2007 .

[37]  Douglas A. Keszler,et al.  Solution‐Processed HafSOx and ZircSOx Inorganic Thin‐Film Dielectrics and Nanolaminates , 2007 .

[38]  Sang-Won Kang,et al.  Interface effect on dielectric constant of HfO2∕Al2O3 nanolaminate films deposited by plasma-enhanced atomic layer deposition , 2007 .

[39]  K. Kukli,et al.  Influence of TiO 2 incorporation in HfO 2 and Al 2O 3 based capacitor dielectrics , 2007 .

[40]  Peter J. Hotchkiss,et al.  Phosphonic Acid‐Modified Barium Titanate Polymer Nanocomposites with High Permittivity and Dielectric Strength , 2007 .

[41]  G. M. Rao,et al.  Effects of O vacancies and C doping on dielectric properties of ZrO2: A first-principles study , 2006 .

[42]  G. Eisenstein,et al.  Composition, surface morphology and electrical characteristics of Al2O3 TiO2 nanolaminates and AlTiO films on silicon , 2006 .

[43]  T. Seidel,et al.  Characterization of Charge Storage in ALD Nanolaminates , 2006 .

[44]  D. Kwong,et al.  Physical and electrical characteristics of high-κ gate dielectric Hf(1−x)LaxOy , 2006 .

[45]  Minoru Osada,et al.  High‐κ Dielectric Nanofilms Fabricated from Titania Nanosheets , 2006 .

[46]  J. Robertson High dielectric constant gate oxides for metal oxide Si transistors , 2006 .

[47]  S. George,et al.  Optimization and Structural Characterization of W/Al2O3 Nanolaminates Grown Using Atomic Layer Deposition Techniques , 2005 .

[48]  C. Heo,et al.  Deposition of TiO2 thin films using RF magnetron sputtering method and study of their surface characteristics , 2005 .

[49]  S. Saha,et al.  Hybrid titanium–aluminum oxide layer as alternative high-k gate dielectric for the next generation of complementary metal–oxide–semiconductor devices , 2005 .

[50]  S. George,et al.  Nucleation and growth during the atomic layer deposition of W on Al2O3 and Al2O3 on W , 2004 .

[51]  C. Hwang,et al.  High dielectric constant TiO2 thin films on a Ru electrode grown at 250 °C by atomic-layer deposition , 2004 .

[52]  K. Younsi,et al.  The future of nanodielectrics in the electrical power industry , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[53]  Lauri Niinistö,et al.  Advanced electronic and optoelectronic materials by Atomic Layer Deposition: An overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials , 2004 .

[54]  K. Schwarz,et al.  The interface between silicon and a high-k oxide , 2004, Nature.

[55]  T. Kunitake,et al.  Solution‐based Fabrication of High‐κ Gate Dielectrics for Next‐Generation Metal‐Oxide Semiconductor Transistors , 2004 .

[56]  Mikko Ritala,et al.  Atomic layer deposition chemistry: recent developments and future challenges. , 2003, Angewandte Chemie.

[57]  Hyungjun Kim,et al.  Atomic layer deposition of metal and nitride thin films: Current research efforts and applications for semiconductor device processing , 2003 .

[58]  Robert M. Wallace,et al.  High-κ Dielectric Materials for Microelectronics , 2003 .

[59]  T. Sasaki,et al.  Oversized Titania Nanosheet Crystallites Derived from Flux-Grown Layered Titanate Single Crystals , 2003 .

[60]  J. McPherson,et al.  Trends in the ultimate breakdown strength of high dielectric-constant materials , 2003 .

[61]  Mamoru Watanabe,et al.  Redoxable nanosheet crystallites of MnO2 derived via delamination of a layered manganese oxide. , 2003, Journal of the American Chemical Society.

[62]  D. Kwong,et al.  Dependence of Chemical Composition Ratio on Electrical Properties of HfO2–Al2O3 Gate Dielectric , 2003 .

[63]  Steven M. George,et al.  Growth of ZnO/Al2O3 Alloy Films Using Atomic Layer Deposition Techniques , 2003 .

[64]  Yasuhiro Shimamoto,et al.  Rutile-type TiO2 thin film for high-k gate insulator , 2003 .

[65]  T. Ma,et al.  Effect of Al inclusion in HfO2 on the physical and electrical properties of the dielectrics , 2002, IEEE Electron Device Letters.

[66]  D. Kwong,et al.  Thermally stable CVD HfO/sub x/N/sub y/ advanced gate dielectrics with poly-Si gate electrode , 2002, Digest. International Electron Devices Meeting,.

[67]  J. Duboz Hot photoluminescence in GaN: Carrier energy relaxation and hot phonon effects , 2002 .

[68]  John Robertson,et al.  Band offsets and Schottky barrier heights of high dielectric constant oxides , 2002 .

[69]  Kwangho Jeong,et al.  Dielectric characteristics of Al2O3–HfO2 nanolaminates on Si(100) , 2002 .

[70]  J. Gregg,et al.  Exploring grain size as a cause for “dead-layer” effects in thin film capacitors , 2002 .

[71]  Steven M. George,et al.  ZnO/Al2O3 nanolaminates fabricated by atomic layer deposition: growth and surface roughness measurements , 2002 .

[72]  Dim-Lee Kwong,et al.  Energy gap and band alignment for (HfO2)x(Al2O3)1−x on (100) Si , 2002 .

[73]  C. Hwang Thickness-dependent dielectric constants of (Ba,Sr)TiO3 thin films with Pt or conducting oxide electrodes , 2002 .

[74]  M. Caymax,et al.  Characterisation of ALCVD Al2O3–ZrO2 nanolaminates, link between electrical and structural properties , 2002 .

[75]  Mikko Ritala,et al.  Atomic layer deposition of Al2O3, ZrO2, Ta2O5, and Nb2O5 based nanolayered dielectrics , 2002 .

[76]  H. Hwang,et al.  Electrical and Structural Properties of Nanolaminate (Al2O3/ZrO2/Al2O3) for Metal Oxide Semiconductor Gate Dielectric Applications , 2002 .

[77]  H. Hwang,et al.  Excellent thermal stability of Al2O3/ZrO2/Al2O3 stack structure for metal–oxide–semiconductor gate dielectrics application , 2002 .

[78]  D. C. Johnson,et al.  X-ray reflectivity characterization of ZnO/Al2O3multilayers prepared by atomic layer deposition , 2002 .

[79]  Raghaw Rai,et al.  Thermodynamic stability of high-K dielectric metal oxides ZrO2 and HfO2 in contact with Si and SiO2 , 2002 .

[80]  Darrell G. Schlom,et al.  A Thermodynamic Approach to Selecting Alternative Gate Dielectrics , 2002 .

[81]  R. Wallace,et al.  Alternative Gate Dielectrics for Microelectronics , 2002 .

[82]  Robert M. Wallace,et al.  High-κ gate dielectric materials , 2002 .

[83]  R. Wallace,et al.  High-κ gate dielectrics: Current status and materials properties considerations , 2001 .

[84]  Mikko Ritala,et al.  Development of Dielectric Properties of Niobium Oxide, Tantalum Oxide, and Aluminum Oxide Based Nanolayered Materials , 2001 .

[85]  Jon-Paul Maria,et al.  Alternative dielectrics to silicon dioxide for memory and logic devices , 2000, Nature.

[86]  Frans Spaepen,et al.  Tensile testing of free-standing Cu, Ag and Al thin films and Ag/Cu multilayers , 2000 .

[87]  Arthur W. Sleight,et al.  High Dielectric Constant in ACu3Ti4O12 and ACu3Ti3FeO12 Phases , 2000 .

[88]  P. Yashar,et al.  Nanometer scale multilayered hard coatings , 1999 .

[89]  Angus Kingon,et al.  Device physics: Memories are made of … , 1999, Nature.

[90]  S. Vepřek The search for novel, superhard materials , 1999 .

[91]  P. Yashar,et al.  Deposition and mechanical properties of polycrystalline Y_2O_3/ZrO_2 superlattices , 1999 .

[92]  Hari Singh Nalwa,et al.  Handbook of Low and High Dielectric Constant Materials and Their Applications , 1999 .

[93]  H. Rietschel,et al.  HIGH DIELECTRIC CONSTANT AND TUNABILITY OF EPITAXIAL SRTIO3 THIN FILM CAPACITORS , 1999 .

[94]  Gang Chen,et al.  Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices , 1998 .

[95]  T. Sasaki,et al.  Osmotic Swelling to Exfoliation. Exceptionally High Degrees of Hydration of a Layered Titanate , 1998 .

[96]  T. Borca-Tasciuc,et al.  Thermal Conductivity and Heat Transfer in Superlattices , 1997 .

[97]  K. Kukli,et al.  Properties of (Nb1 − xTax)2O5 solid solutions and (Nb1 − xTax)2O5-ZrO2 nanolaminates grown by Atomic Layer Epitaxy , 1997 .

[98]  O. Zywitzki,et al.  Influence of coating parameters on the structure and properties of Al2O3 layers reactively deposited by means of pulsed magnetron sputtering , 1996 .

[99]  Mamoru Watanabe,et al.  Macromolecule-like Aspects for a Colloidal Suspension of an Exfoliated Titanate. Pairwise Association of Nanosheets and Dynamic Reassembling Process Initiated from It , 1996 .

[100]  Angus I. Kingon,et al.  High-Permittivity Perovskite Thin Films for Dynamic Random-Access Memories , 1996 .

[101]  Mikko Ritala,et al.  Tailoring the dielectric properties of HfO2–Ta2O5 nanolaminates , 1996 .

[102]  W. F. Peck,et al.  Dielectric properties of TiO_2–Nb_2O_5 crystallographic shear structures , 1996 .

[103]  M. C. Scott,et al.  Fatigue-free ferroelectric capacitors with platinum electrodes , 1995, Nature.

[104]  F. Modine,et al.  Electrical conduction in CaF2 and CaF2‐Al2O3 nanocomposite films on Al2O3 substrates , 1993 .

[105]  H. Kattelus,et al.  Layered tantalum-aluminum oxide films deposited by atomic layer epitaxy , 1993 .

[106]  Schwabl,et al.  Ferromagnetic multilayers: Statics and dynamics. , 1988, Physical review. B, Condensed matter.

[107]  D. M. Smyth,et al.  Energy storage in ceramic dielectrics , 1972 .

[108]  Ross C. Purdy,et al.  The American Ceramic Society , 1922 .

[109]  Jonathan J. Travis,et al.  Atomic Layer Deposition of TiO2 on Graphene for Supercapacitors , 2012 .

[110]  M. Osada,et al.  A‐ and B‐Site Modified Perovskite Nanosheets and Their Integrations into High‐k Dielectric Thin Films , 2012 .

[111]  W. Knoll,et al.  Functional polymer films , 2011 .

[112]  Jun Hee Lee,et al.  RF-magnetron sputtering technique for producing hydroxyapatite coating film on various substrates. , 2007, Bio-medical materials and engineering.

[113]  Jane P. Chang,et al.  Material and electrical characterization of carbon-doped Ta2O5 films for embedded dynamic random access memory applications , 2002 .

[114]  R. Cava Dielectric materials for applications in microwave communications , 2001 .

[115]  K. Kukli,et al.  Properties of Ta2 O 5‐Based Dielectric Nanolaminates Deposited by Atomic Layer Epitaxy , 1997 .

[116]  W. H. Gitzen Alumina as a ceramic material , 1970 .

[117]  William Robert Grove,et al.  VII. On the electro-chemical polarity of gases , 1852, Philosophical Transactions of the Royal Society of London.