Odd 2-factored snarks

A snark is a cubic cyclically 4-edge connected graph with edge chromatic number four and girth at least five. We say that a graph G is odd 2-factored if for each 2-factor F of G each cycle of F is odd. Some of the authors conjectured in Abreu et al. (2012) [4] that a snark G is odd 2-factored if and only if G is the Petersen graph, Blanusa 2, or a flower snark J(t), with t>=5 and odd. Brinkmann et al. (2013) [10] have obtained two counterexamples that disprove this conjecture by performing an exhaustive computer search of all snarks of order n@?36. In this paper, we present a method for constructing odd 2-factored snarks. In particular, we independently construct the two odd 2-factored snarks that yield counterexamples to the above conjecture. Moreover, we approach the problem of characterizing odd 2-factored snarks furnishing a partial characterization of cyclically 4-edge connected odd 2-factored snarks. Finally, we pose a new conjecture regarding odd 2-factored snarks.

[1]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[2]  R. Isaacs Infinite Families of Nontrivial Trivalent Graphs Which are not Tait Colorable , 1975 .

[3]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[4]  D. Labbate On 3-cut reductions of minimally 1-factorable cubic bigraphs , 2001, Discret. Math..

[5]  G. Szekeres,et al.  Polyhedral decompositions of cubic graphs , 1973, Bulletin of the Australian Mathematical Society.

[6]  Domenico Labbate Characterizing Minimally 1—Factorable R—Regular Bipartite Graphs , 2002, Discret. Math..

[7]  Cun-Quan Zhang Integer Flows and Cycle Covers of Graphs , 1997 .

[8]  Henri Thuillier,et al.  On family of cubic graphs containing flower snarks , 2010, Discuss. Math. Graph Theory.

[9]  Robert E. L. Aldred,et al.  2-factors with Prescribed and Proscribed Edges , 2005, J. Graph Theory.

[10]  Klas Markström,et al.  Generation and properties of snarks , 2012, J. Comb. Theory B.

[11]  Bill Jackson,et al.  Pseudo 2-factor isomorphic regular bipartite graphs , 2008, J. Comb. Theory, Ser. B.

[12]  J. A. Bondy,et al.  Graph Theory , 2008, Graduate Texts in Mathematics.

[13]  Tait 10. Remarks on the previous Communication , 1880 .

[14]  Giuseppe Mazzuoccolo Covering a cubic graph with perfect matchings , 2013, Discret. Math..

[15]  Bill Jackson,et al.  Regular bipartite graphs with all 2-factors isomorphic , 2004, J. Comb. Theory, Ser. B.

[16]  Derek Allan Holton,et al.  The Petersen graph , 1993, Australian mathematical society lecture series.

[17]  John Sheehan,et al.  Irreducible pseudo 2-factor isomorphic cubic bipartite graphs , 2012, Des. Codes Cryptogr..

[18]  Jonas Hägglund On Snarks that are far from being 3-Edge Colorable , 2016, Electron. J. Comb..

[19]  Robin Thomas,et al.  Tutte's Edge-Colouring Conjecture , 1997, J. Comb. Theory, Ser. B.

[20]  Martin Kochol,et al.  Snarks without Small Cycles , 1996, J. Comb. Theory, Ser. B.

[21]  Bill Jackson,et al.  2-Factor hamiltonian graphs , 2003, J. Comb. Theory, Ser. B.

[22]  Bill Jackson,et al.  Graphs and digraphs with all 2-factors isomorphic , 2004, J. Comb. Theory, Ser. B.

[23]  Bill Jackson,et al.  Det-extremal cubic bipartite graphs , 2003, J. Graph Theory.

[24]  Giuseppe Mazzuoccolo Covering a 3-graph with perfect matchings , 2011 .

[25]  Michael S. Jacobson,et al.  On the Extremal Number of Edges in 2-Factor Hamiltonian Graphs , 2006 .

[26]  Domenico Labbate,et al.  On minimally one-factorable r-regular bipartite graphs , 2000, Discret. Math..

[27]  Beatrice Ruini,et al.  Infinite Classes of Dihedral Snarks , 2008 .

[28]  Jean-Marie Vanherpe,et al.  On the perfect matching index of bridgeless cubic graphs , 2009, ArXiv.

[29]  Robin J. Wilson The Petersen Graph (Australian Mathematical Society Lecture Series 7) , 1995 .

[30]  John Sheehan,et al.  Pseudo and strongly pseudo 2-factor isomorphic regular graphs and digraphs , 2012, Eur. J. Comb..

[31]  D. R. Fulkerson,et al.  Blocking and anti-blocking pairs of polyhedra , 1971, Math. Program..

[32]  Bill Jackson,et al.  Corrigendum to "Graphs and digraphs with all 2-factors isomorphic" [J. Combin. Theory Ser. B 92 (2) (2004) 395-404] , 2009, J. Comb. Theory, Ser. B.

[33]  Domenico Labbate Amalgams of Cubic Bipartite Graphs , 2004, Des. Codes Cryptogr..

[34]  F. Harary The Determinant of the Adjacency Matrix of a Graph , 1962 .

[35]  Ajit A. Diwan Disconnected 2-Factors in Planar Cubic Bridgeless Graphs , 2002, J. Comb. Theory, Ser. B.

[36]  W. T. Tutte,et al.  A Contribution to the Theory of Chromatic Polynomials , 1954, Canadian Journal of Mathematics.