Biological Investigation of Neural Circuits in the Insect Brain

Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabilities. This provided novel insight into the wiring and the working of central brain structures like the mushroom bodies and the central complex. Plasticity of the nervous system underlies adaptive behaviour. Drosophila flies show various memories from a 4-s working memory for orientation to a life-long body-size memory. Here we will discuss some of the functions and brain structures underlying fitness and role-model function of insects for autonomously roving robots.

[1]  Ralph J Greenspan,et al.  Salience modulates 20–30 Hz brain activity in Drosophila , 2003, Nature Neuroscience.

[2]  K. Broadie,et al.  Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects , 1995, Neuron.

[3]  Johannes D. Seelig,et al.  Neural dynamics for landmark orientation and angular path integration , 2015, Nature.

[4]  R. Strauss,et al.  Visual Working Memory Requires Permissive and Instructive NO/cGMP Signaling at Presynapses in the Drosophila Central Brain , 2017, Current Biology.

[5]  M. Heisenberg,et al.  Neuronal architecture of the central complex in Drosophila melanogaster , 2004, Cell and Tissue Research.

[6]  Thomas Preat,et al.  Exclusive Consolidated Memory Phases in Drosophila , 2004, Science.

[7]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.

[8]  Roland Strauss,et al.  Serotonin modulates a depression-like state in Drosophila responsive to lithium treatment , 2017, Nature Communications.

[9]  A Guo,et al.  Choice Behavior of Drosophila Facing Contradictory Visual Cues , 2001, Science.

[10]  Roland Strauss,et al.  Locomotor control by the central complex in Drosophila—An analysis of the tay bridge mutant , 2008, Developmental neurobiology.

[11]  Thomas Raabe,et al.  The S6KII (rsk) Gene of Drosophila melanogaster Differentially Affects an Operant and a Classical Learning Task , 2004, The Journal of Neuroscience.

[12]  Roland Strauss,et al.  Higher Brain Centers for Intelligent Motor Control in Insects , 2011, ICIRA.

[13]  M Heisenberg,et al.  Visual pattern memory without shape recognition. , 1995, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[14]  R. Wolf,et al.  A new paradigm for operant conditioning of Drosophila melanogaster , 1996, Journal of Comparative Physiology A.

[15]  Nicolas Y. Masse,et al.  Olfactory Information Processing in Drosophila , 2009, Current Biology.

[16]  Ronald L. Davis,et al.  Reciprocal synapses between mushroom body and dopamine neurons form a positive feedback loop required for learning , 2017, eLife.

[17]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[18]  M. Heisenberg,et al.  Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory Memories in Drosophila , 2003, The Journal of Neuroscience.

[19]  Kei Ito,et al.  Neuronal assemblies of the Drosophila mushroom body , 2008, The Journal of comparative neurology.

[20]  R. Morris Spatial Localization Does Not Require the Presence of Local Cues , 1981 .

[21]  R. Davis,et al.  Tripartite mushroom body architecture revealed by antigenic markers. , 1998, Learning & memory.

[22]  Martin Heisenberg,et al.  Memories in drosophila heat-box learning. , 2002, Learning & memory.

[23]  N. Strausfeld,et al.  Mushroom bodies of the cockroach: Their participation in place memory , 1998, The Journal of comparative neurology.

[24]  B. Swinderen,et al.  Attention-like processes in Drosophila require short-term memory genes. , 2007 .

[25]  Scott Waddell,et al.  Shocking Revelations and Saccharin Sweetness in the Study of Drosophila Olfactory Memory , 2013, Current Biology.

[26]  Roland Strauss,et al.  Visual Targeting of Motor Actions in Climbing Drosophila , 2010, Current Biology.

[27]  L. Abbott,et al.  Random Convergence of Olfactory Inputs in the Drosophila Mushroom Body , 2013, Nature.

[28]  K. Siwicki,et al.  Mushroom Body Ablation Impairs Short-Term Memory and Long-Term Memory of Courtship Conditioning in Drosophila melanogaster , 1999, Neuron.

[29]  G. Rubin,et al.  Mushroom body output neurons encode valence and guide memory-based action selection in Drosophila , 2014, eLife.

[30]  Nicholas J. Strausfeld,et al.  A new role for the insect mushroom bodies: place memory and motor control , 1993 .

[31]  Stefan R. Pulver,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[32]  V. Jayaraman,et al.  Ring attractor dynamics in the Drosophila central brain , 2017, Science.

[33]  M. Heisenberg,et al.  Inescapable Stress Changes Walking Behavior in Flies - Learned Helplessness Revisited , 2016, PloS one.

[34]  M. Heisenberg,et al.  Flies Remember the Time of Day , 2015, Current Biology.

[35]  W. Quinn,et al.  Classical conditioning and retention in normal and mutantDrosophila melanogaster , 1985, Journal of Comparative Physiology A.

[36]  Troy Zars,et al.  Place memory retention in Drosophila , 2015, Neurobiology of Learning and Memory.

[37]  R. Strauss,et al.  Goal-Driven Behavioral Adaptations in Gap-Climbing Drosophila , 2005, Current Biology.

[38]  Johannes Felsenberg,et al.  Re-evaluation of learned information in Drosophila , 2017, Nature.

[39]  A conserved plan for wiring up the fan-shaped body in the grasshopper and Drosophila , 2017, Development Genes and Evolution.

[40]  Daryl M. Gohl,et al.  Layered reward signaling through octopamine and dopamine in Drosophila , 2012, Nature.

[41]  M. Hammer,et al.  Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. , 1998, Learning & memory.

[42]  J. B. Duffy,et al.  GAL4 system in drosophila: A fly geneticist's swiss army knife , 2002, Genesis.

[43]  Zhefeng Gong,et al.  Differential roles of the fan-shaped body and the ellipsoid body in Drosophila visual pattern memory. , 2009, Learning & memory.

[44]  David J. Anderson,et al.  Optogenetic control of freely behaving adult Drosophila using a red-shifted channelrhodopsin , 2013, Nature Methods.

[45]  Aike Guo,et al.  Two Clusters of GABAergic Ellipsoid Body Neurons Modulate Olfactory Labile Memory in Drosophila , 2013, The Journal of Neuroscience.

[46]  L. Vosshall,et al.  Molecular architecture of smell and taste in Drosophila. , 2007, Annual review of neuroscience.

[47]  T. Miyamoto,et al.  Suppression of male courtship by a Drosophila pheromone receptor , 2008, Nature Neuroscience.

[48]  R. Strauss,et al.  Coordination of legs during straight walking and turning in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[49]  M Heisenberg,et al.  Mushroom bodies suppress locomotor activity in Drosophila melanogaster. , 1998, Learning & memory.

[50]  A. Chiang,et al.  Long-term memory requires sequential protein synthesis in three subsets of mushroom body output neurons in Drosophila , 2017, Scientific Reports.

[51]  M. Heisenberg,et al.  Starvation promotes odor/feeding-time associations in flies , 2017, Learning & memory.

[52]  G. Rubin,et al.  Tools for neuroanatomy and neurogenetics in Drosophila , 2008, Proceedings of the National Academy of Sciences.

[53]  Gene E. Robinson,et al.  Experience- and Age-Related Outgrowth of Intrinsic Neurons in the Mushroom Bodies of the Adult Worker Honeybee , 2001, The Journal of Neuroscience.

[54]  J. Armstrong,et al.  Structure of the adult central complex in Drosophila: Organization of distinct neuronal subsets , 2010, The Journal of comparative neurology.

[55]  Bruno van Swinderen,et al.  Shared Visual Attention and Memory Systems in the Drosophila Brain , 2009, PloS one.

[56]  Thomas Preat,et al.  Parallel Processing of Appetitive Short- and Long-Term Memories In Drosophila , 2011, Current Biology.

[57]  Gaby Maimon,et al.  A neural circuit architecture for angular integration in Drosophila , 2017, Nature.

[58]  Michael B. Reiser,et al.  Visual Place Learning in Drosophila melanogaster , 2011, Nature.

[59]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[60]  R. Stocker,et al.  A central neural circuit for experience-independent olfactory and courtship behavior in Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[61]  Li Liu,et al.  Context generalization in Drosophila visual learning requires the mushroom bodies , 1999, Nature.

[62]  Scott Waddell,et al.  Sweet Taste and Nutrient Value Subdivide Rewarding Dopaminergic Neurons in Drosophila , 2015, Current Biology.

[63]  Roland Strauss,et al.  Mushroom Bodies Enhance Initial Motor Activity in drosophila , 2009, Journal of neurogenetics.

[64]  G. Rubin,et al.  Neuroarchitecture and neuroanatomy of the Drosophila central complex: A GAL4-based dissection of protocerebral bridge neurons and circuits , 2014, The Journal of comparative neurology.

[65]  Stanley Heinze,et al.  Transformation of Polarized Light Information in the Central Complex of the Locust , 2009, The Journal of Neuroscience.

[66]  G. Rubin,et al.  Shared mushroom body circuits underlie visual and olfactory memories in Drosophila , 2014, eLife.

[67]  Julie H. Simpson,et al.  A Systematic Nomenclature for the Insect Brain , 2014, Neuron.

[68]  T. Préat,et al.  Genetic dissection of consolidated memory in Drosophila , 1994, Cell.

[69]  Johannes D. Seelig,et al.  Angular velocity integration in a fly heading circuit , 2017, eLife.

[70]  A. Guo,et al.  The GABA system regulates the sparse coding of odors in the mushroom bodies of Drosophila. , 2013, Biochemical and biophysical research communications.

[71]  Ronald L. Davis,et al.  System-Like Consolidation of Olfactory Memories in Drosophila , 2013, The Journal of Neuroscience.

[72]  Roland Strauss,et al.  Cell types and coincident synapses in the ellipsoid body of Drosophila , 2014, The European journal of neuroscience.

[73]  Volker Hartenstein,et al.  Visual Input to the Drosophila Central Complex by Developmentally and Functionally Distinct Neuronal Populations , 2017, Current Biology.

[74]  A. Guo,et al.  A subset of cholinergic mushroom body neurons requires Go signaling to regulate sleep in Drosophila. , 2013, Sleep.

[75]  Andrew C. Lin,et al.  Different Kenyon Cell Populations Drive Learned Approach and Avoidance in Drosophila , 2013, Neuron.

[76]  R. Strauss,et al.  Analysis of a spatial orientation memory in Drosophila , 2008, Nature.

[77]  Ronald L. Davis,et al.  Spatiotemporal Rescue of Memory Dysfunction in Drosophila , 2003, Science.

[78]  Stanley Heinze,et al.  Neural Coding: Bumps on the Move , 2017, Current Biology.

[79]  Reinhard Wolf,et al.  Central complex and mushroom bodies mediate novelty choice behavior in Drosophila , 2015, Journal of neurogenetics.

[80]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[81]  W. Gronenberg,et al.  Multisensory Convergence in the Mushroom Bodies of Ants and Bees , 2004, Acta biologica Hungarica.

[82]  M Heisenberg,et al.  No-bridge of Drosophila melanogaster: portrait of a structural brain mutant of the central complex. , 1992, Journal of neurogenetics.

[83]  Uwe Homberg,et al.  Sky Compass Orientation in Desert Locusts—Evidence from Field and Laboratory Studies , 2015, Front. Behav. Neurosci..

[84]  Markus Knaden,et al.  Decoding odor quality and intensity in the Drosophila brain , 2014, eLife.

[85]  T. Kitamoto,et al.  Differential roles of two major brain structures, mushroom bodies and central complex, for Drosophila male courtship behavior. , 2006, Journal of neurobiology.

[86]  Johannes D. Seelig,et al.  Feature detection and orientation tuning in the Drosophila central complex , 2013, Nature.

[87]  M. Heisenberg,et al.  Flies Cope with Uncontrollable Stress by Learned Helplessness , 2013, Current Biology.

[88]  Stanley Heinze,et al.  Sun Compass Integration of Skylight Cues in Migratory Monarch Butterflies , 2011, Neuron.

[89]  R. Menzel,et al.  A new ascending sensory tract to the calyces of the honeybee mushroom body, the subesophageal‐calycal tract , 2003, The Journal of comparative neurology.

[90]  Roland Strauss,et al.  The visual orientation memory of Drosophila requires Foraging (PKG) upstream of Ignorant (RSK2) in ring neurons of the central complex. , 2012, Learning & memory.

[91]  M. Heisenberg,et al.  Distinct memory traces for two visual features in the Drosophila brain , 2006, Nature.

[92]  Roland Strauss,et al.  A screen for constituents of motor control and decision making in Drosophila reveals visual distance-estimation neurons , 2016, Scientific Reports.

[93]  L. Luo,et al.  Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. , 1999, Development.

[94]  R. W. Siegel,et al.  Conditioned responses in courtship behavior of normal and mutant Drosophila. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Ann-Shyn Chiang,et al.  A comprehensive wiring diagram of the protocerebral bridge for visual information processing in the Drosophila brain. , 2013, Cell reports.