Dynamic critical behavior of the Swendsen-Wang algorithm: The two-dimensional three-state Potts model revisited

We have performed a high-precision Monte Carlo study of the dynamic critical behavior of the Sweden-Wang algorithm for the two-dimensional three-state Potts model. We find that the Li-Sokal bound (τint.δ⩾const×Cn) is almost but not quite sharp. The ratio τint.δ/Cn seems to diverge either as a small power (≈0.08) or as a logarithm.

[1]  Alan D. Sokal,et al.  Logarithmic Corrections and Finite-Size Scaling in the Two-Dimensional 4-State Potts Model , 1996 .

[2]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[3]  Coddington,et al.  Comparison of cluster algorithms for two-dimensional Potts models. , 1991, Physical review. B, Condensed matter.

[4]  B. Nienhuis,et al.  Analytical calculation of two leading exponents of the dilute Potts model , 1982 .

[5]  J. Cardy,et al.  Scaling Theory of the Potts Model Multicritical Point , 1980 .

[6]  V. Dotsenko Critical behaviour and associated conformal algebra of the Z3 Potts model , 1984 .

[7]  K. Binder,et al.  The Monte Carlo Method in Condensed Matter Physics , 1992 .

[8]  A. Sokal,et al.  The pivot algorithm: A highly efficient Monte Carlo method for the self-avoiding walk , 1988 .

[9]  V. J. Emery,et al.  Critical properties of two-dimensional models , 1981 .

[10]  T. W. Anderson,et al.  Statistical analysis of time series , 1972 .

[11]  L. Schulman In: Finite size scaling and numerical simulation of statistical systems , 1990 .

[12]  Vladimir Privman,et al.  Finite Size Scaling and Numerical Simulation of Statistical Systems , 1990 .

[13]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[14]  Alan D. Sokal,et al.  How to beat critical slowing down: 1990 update , 1991 .

[15]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[16]  S. Alexander Lattice gas transition of He on Grafoil. A continuous transition with cubic terms , 1975 .

[17]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[18]  Ray,et al.  Mean-field study of the Swendsen-Wang dynamics. , 1989, Physical review. A, General physics.

[19]  Anthony N. Burkitt,et al.  System size dependence of the autocorrelation time for the Swendsen-Wang Ising model , 1990 .

[20]  Dynamic critical behavio(u)r of a cluster algorithm for the Ashkin-Teller model , 1995, hep-lat/9509031.

[21]  Cluster method for the Ashkin-Teller model. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[22]  Phase transitions in two-dimensional systems , 1978 .

[23]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[24]  A. D. Sokal,et al.  Dynamic critical behavior of a Swendsen-Wang-Type algorithm for the Ashkin-Teller model , 1996 .

[25]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[26]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[27]  M. Fisher,et al.  Bounded and Inhomogeneous Ising Models. I. Specific-Heat Anomaly of a Finite Lattice , 1969 .

[28]  Li,et al.  Rigorous lower bound on the dynamic critical exponents of the Swendsen-Wang algorithm. , 1989, Physical review letters.

[29]  Ulli Wolff,et al.  Critical slowing down , 1990 .

[30]  J. Ashkin,et al.  Two Problems in the Statistical Mechanics of Crystals. I. The Propagation of Order in Crystal Lattices. I. The Statistics of Two-Dimensional Lattices with Four Components. , 1943 .

[31]  D. Scalapino,et al.  Singularities and Scaling Functions at the Potts-Model Multicritical Point , 1980 .

[32]  C. Fortuin,et al.  On the random-cluster model II. The percolation model , 1972 .

[33]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[34]  Coddington,et al.  Empirical relations between static and dynamic exponents for Ising model cluster algorithms. , 1992, Physical review letters.