Multiscale modeling of plastic deformation of molybdenum and tungsten: I. Atomistic studies of the core structure and glide of 1/2〈1 1 1〉 screw dislocations at 0 K

Abstract Owing to their non-planar cores, 1/2〈1 1 1〉 screw dislocations govern the plastic deformation of body-centered cubic (bcc) metals. Atomistic studies of the glide of these dislocations at 0 K have been performed using Bond Order Potentials for molybdenum and tungsten that account for the mixed metallic and covalent bonding in transition metals. When applying pure shear stress in the slip direction significant twinning–antitwinning asymmetry is displayed for molybdenum but not for tungsten. However, for tensile/compressive loading the Schmid law breaks down in both metals, principally due to the effect of shear stresses perpendicular to the slip direction that alter the dislocation core. Recognition of this phenomenon forms a basis for the development of physically based yield criteria that capture the breakdown of the Schmid law in bcc metals. Moreover, dislocation glide may be preferred on {1 1 0} planes other than the most highly stressed one, which is reminiscent of the anomalous slip observed in many bcc metals.

[1]  Sidney Yip,et al.  Handbook of Materials Modeling , 2005 .

[2]  John L. Bassani,et al.  Plastic flow of crystals , 1993 .

[3]  G. Taylor,et al.  Slip systems in b.c.c. Li-Mg alloys , 1989 .

[4]  A. Seeger,et al.  The Flow Stress of Ultra‐High‐Purity Molybdenum Single Crystals , 1997 .

[5]  D. K. Bowen,et al.  DEFORMATION PROPERTIES OF NIOBIUM SINGLE CRYSTALS , 1967 .

[6]  Christian Elsässer,et al.  Bond-Order Potential for Simulations of Extended Defects in Tungsten , 2007 .

[7]  P. L. Pratt,et al.  The influence of orientation on slip and strain hardening of molybdenum single crystals , 1974 .

[8]  Kazuhiro Ito,et al.  Complex macroscopic plastic flow arising from non-planar dislocation core structures , 2001 .

[9]  E. Kuramoto,et al.  Orientation dependence of slip in niobium single crystals at 4.2 and 77 K , 1984 .

[10]  P. L. Pratt,et al.  PLASTIC ANISOTROPY OF TANTALUM, NIOBIUM, AND MOLYBDENUM , 1967 .

[11]  V. Vítek,et al.  Dislocations and stacking faults , 1970 .

[12]  A. Seeger The Flow Stress of High-Purity Refractory Body-Centred Cubic Metals and its Modification by Atomic Defects , 1995 .

[13]  David G. Pettifor,et al.  Atom-based bond-order potentials for modelling mechanical properties of metals , 2007 .

[14]  V. Vítek Structure of dislocation cores in metallic materials and its impact on their plastic behaviour , 1992 .

[15]  G. S. Murty,et al.  The orientation and temperature dependence of plastic flow in potassium , 1981 .

[16]  R. Reed,et al.  Further observations of anomalous slip in niobium single crystals , 1976 .

[17]  M. Duesbery The influence of core structure on dislocation mobility , 1969 .

[18]  P. Meester,et al.  Anomalous slip in high-purity vanadium crystals deformed in compression , 1977 .

[19]  J. Bassani,et al.  Non-associated plastic flow in single crystals , 1992 .

[20]  B. Mordike,et al.  Slip Geometry of Tantalum and Tantalum Alloys , 1975 .

[21]  S. Takeuchi,et al.  Slip Systems and Their Critical Shear Stress in 3% Silicon Iron , 1964 .

[22]  D. Brunner,et al.  Extension of Measurements of the Tensile Flow Stress of High-Purity α-Iron Single Crystals to Very Low Temperatures , 1992 .

[23]  V. Vítek,et al.  Breakdown of the Schmid Law in BCC Molybdenum Related to the Effect of Shear Stress Perpendicular to the Slip Direction , 2005, 0808.0738.

[24]  Marc Fivel,et al.  The glide of screw dislocations in bcc Fe: Atomistic static and dynamic simulations ☆ , 2006 .

[25]  Sidney Yip,et al.  Atomistic simulations of dislocations and defects , 2002 .

[26]  W. Sigle High-resolution electron microscopy and molecular dynamics study of the (a/2)[111] screw dislocation in molybdenum , 1999 .

[27]  J. Hafner Atomic-scale computational materials science ☆ , 2000 .

[28]  K. Jacobsen,et al.  Density functional theory studies of screw dislocation core structures in bcc metals , 2003 .

[29]  M. Duesbery On non-glide stresses and their influence on the screw dislocation core in body-centred cubic metals I. The Peierls stress , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[30]  J. Christian Some surprising features of the plastic deformation of body-centered cubic metals and alloys , 1983 .

[31]  V. Vítek,et al.  Intrinsic stacking faults in body-centred cubic crystals , 1968 .

[32]  Y. Mishin,et al.  Use of the Nye tensor in analyzing HREM images of bcc screw dislocations , 2006 .

[33]  V. Vítek,et al.  Influence of non-glide stresses on plastic flow: from atomistic to continuum modeling , 2004 .

[34]  A. Seeger,et al.  Work hardening and flow stress of ultrapure molybdenum single crystals , 2001 .

[35]  G. Ackland,et al.  An improved N-body semi-empirical model for body-centred cubic transition metals , 1987 .

[36]  A. Seeger,et al.  Anomalous slip - A feature of high-purity body-centred cubic metals , 2002 .

[37]  S. Takeuchi Dislocation core effects on plasticity , 1999 .

[38]  M. Finnis Interatomic forces in materials , 2001 .

[39]  Arias,et al.  Ab initio study of screw dislocations in Mo and ta: A new picture of plasticity in bcc transition metals , 1999, Physical review letters.

[40]  G. Taylor Thermally-activated deformation of BCC metals and alloys , 1992 .

[41]  T. Mitchell,et al.  Work-hardening in niobium single crystals , 1963 .

[42]  Michael W. Finnis,et al.  Bond-order potentials through the ages , 2007 .

[43]  B. Mordike,et al.  Anomalous slip in Mo-5 at.% Nb and Mo-5 at.% Re alloy single crystals , 1976 .

[44]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[45]  V. Vítek,et al.  Atomistic study of non-Schmid effects in the plastic yielding of bcc metals , 2001 .

[46]  V. Sládek,et al.  Slip Planes in fe - 3% si Single Crystals Deformed at 77 °K , 1967 .

[47]  B. Šesták,et al.  Plastic deformation of Fe–3 wt% si single crystals in the range from 113 to 473 K. I. Thermally activated plastic flow , 1975 .

[48]  F. Guiu Slip asymmetry in molybdenum single crystals deformed in direct shear , 1969 .

[49]  H. Matsui,et al.  Anomalous {110} slip in high-purity molybdenum single crystals and its comparison with that in V(a) metals☆ , 1976 .

[50]  S. Takeuchi,et al.  Orientation dependence of yield stress in 4.4% silicon iron single crystals , 1967 .

[51]  V. Vítek,et al.  Explanation of the discrepancy between the measured and atomistically calculated yield stresses in body-centred cubic metals , 2006, cond-mat/0605449.

[52]  A. Argon,et al.  Plastic deformation of tungsten single crystals at low temperatures , 1966 .

[53]  J. E. Dorn,et al.  The Plastic Deformation Behavior of Mo Single Crystals under Compression , 1972, June 16.

[54]  V. Vítek Core structure of screw dislocations in body-centred cubic metals: relation to symmetry and interatomic bonding , 2004 .

[55]  W. Pichl,et al.  The Flow Stress of High Purity Alkali Metals , 1997 .

[56]  O. Carlson,et al.  Anomalous slip in high-purity vanadium crystals , 1973 .

[57]  J. Bassani,et al.  Non-Schmid yield behavior in single crystals , 1992 .

[58]  W. Pichl Slip Geometry and Plastic Anisotropy of Body-Centered Cubic Metals , 2002 .

[59]  A. Hartmaier,et al.  Controlling factors for the brittle-to-ductile transition in tungsten single crystals , 1998, Science.

[60]  V. Vítek,et al.  Environmental dependence of bonding: A challenge for modelling of intermetallics and fusion materials , 2007 .

[61]  C. Woodward First-principles simulations of dislocation cores , 2005 .

[62]  W. Pichl,et al.  Investigation of the slip geometry of high-purity potassium by in situ X-ray diffraction , 2004 .

[63]  Oskar Emil Meyer,et al.  Vorlesungen über die Theorie der Elasticität der festen Körper und des Lichtäthers , 1885 .

[64]  D. Pettifor,et al.  A comparison of linear scaling tight-binding methods , 1997 .

[65]  E. Kuramoto,et al.  Slip systems and orientation dependence of yield stress in high purity molybdenum single crystals at 4.2 K and 77 K , 1981 .

[66]  G. Taylor,et al.  Anomalous slip in high-purity niobium single crystals deformed at 77°K in tension , 1972 .

[67]  W. Wasserbäch Development of the dislocation arrangement in high‐purity Nb–34 at% Ta alloy single crystals deformed in tension , 1995 .

[68]  David G. Pettifor,et al.  Interatomic bond-order potentials and structural prediction , 2004 .

[69]  V. Vítek,et al.  Plastic anisotropy in b.c.c. transition metals , 1998 .

[70]  T. Mitchell,et al.  Deformation of high purity tantalum single crystals at 4.2 K , 1975 .

[71]  H. Fujita,et al.  In-Situ Deformation of Tungsten Single Crystals with [100] Tensile Axis in an Ultra-High Voltage Electron Microscope , 1976 .

[72]  D. K. Bowen,et al.  The core structure of ½(111) screw dislocations in b.c.c. crystals , 1970 .

[73]  M. Duesbery,et al.  The dislocation core in crystalline materials , 1991 .

[74]  C. Mcmahon,et al.  On the plastic asymmetry in iron crystals , 1973 .

[75]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[76]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[77]  M. Duesbery,et al.  THE DEFORMATION OF NIOBIUM SINGLE CRYSTALS , 1967 .

[78]  D. G. Pettifor,et al.  Bonding and Structure of Molecules and Solids , 1995 .

[79]  R. Becker,et al.  The effect of grain boundaries on the athermal stress of tantalum and tantalum-tungsten alloys , 2002 .

[80]  Aoki,et al.  Bond-order potential and cluster recursion for the description of chemical bonds: Efficient real-space methods for tight-binding molecular dynamics. , 1996, Physical review. B, Condensed matter.

[81]  J. Christian,et al.  Slip in single crystals of niobium-molybdenum alloys deformed in compression , 1970 .

[82]  R. Gröger DEVELOPMENT OF PHYSICALLY BASED PLASTIC FLOW RULES FOR BODY-CENTERED CUBIC METALS WITH TEMPERATURE AND STRAIN RATE DEPENDENCIES , 2007 .

[83]  A. Seeger Peierls barriers, kinks, and flow stress: Recent progress , 2002 .

[84]  Aoki,et al.  Bond-order potentials: Theory and implementation. , 1996, Physical review. B, Condensed matter.

[85]  J. Richter,et al.  Slip Line Pattern and Active Slip Systems of Tungsten and Molybdenum Single Crystals Weakly Deformed in Tension at Room Temperature , 1968 .

[86]  M. Duesbery,et al.  The flow stress of potassium , 1993 .

[87]  M. Duesbery,et al.  On non-glide stresses and their influence on the screw dislocation core in body-centred cubic metals. II. The core structure , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[88]  P. Gumbsch Brittle fracture and the brittle-to-ductile transition of tungsten , 2003 .

[89]  W. Spitzig,et al.  Three-stage hardening in tantalum single crystals. , 1965 .

[90]  D. Pettifor,et al.  New many-body potential for the bond order. , 1989, Physical review letters.

[91]  J. Fellows Second International Conference on The Strength of Metals and Alloys , 1970 .

[92]  Seungwu Han,et al.  Development of new interatomic potentials appropriate for crystalline and liquid iron , 2003 .

[93]  M. Meshii,et al.  The deformation of niobium single crystals at temperatures between 77 and 4.2 K , 1981 .

[94]  J. E. Dorn,et al.  ASYMMETRIC SLIP IN Mo SINGLE CRYSTALS. , 1970 .

[95]  M. Duesbery,et al.  A detailed study of the deformation of high purity niobium single crystals , 1969 .

[96]  C. Woodward,et al.  Ab-initio simulation of isolated screw dislocations in bcc Mo and Ta , 2001 .

[97]  J. Christian,et al.  The mechanical properties of pure iron tested in compression over the temperature range 2 to 293 °K , 1967, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[98]  D. Pettifor,et al.  Dislocations in materials with mixed covalent and metallic bonding , 2005 .