Photoactive binary and ternary lanthanide (Eu3+, Tb3+, Nd3+) hybrids with p-tert-butylcalix[4]arene derived Si-O linkages and polymers.

Through the reaction between the hydroxyl groups of p-tert-butylcalix[4]arene derivatives (Calix-Br, Calix-AC) and the isocyanate group of 3-(triethoxysilyl)-propyl isocyanate (TEPIC), two novel kinds of functional polysilsesquioxanes linkage precursors Calix-Br-Si and Calix-AC-Si have been synthesized. Then the binary and ternary hybrid materials are assembled with chemical bonds, which are composed of lanthanide ion centres (Eu(3+), Tb(3+), Nd(3+)), precursors Calix-Br-Si or Calix-AC-Si and the organic polymers [poly(4-vinylpyridine) (PVPD) or poly(methyl methacrylate) (PMMA)]. The composition and physical properties of these hybrids are characterized, especially comparing the photoluminescent characters. It is found that the hybrids with modified p-tert-butylcalix[4]arene derivative units show better photoluminescent properties than pure original p-tert-butylcalix[4]arene units or lanthanide complexes. Besides, introduction of polymer chain is favorable for the thermal stability, regular microstructure and luminescence of hybrid systems. Among the europium hybrids, the hybrids containing the polymer PMMA possesses the longest lifetime and highest quantum efficiency.

[1]  Xiaofei Qiao,et al.  Photoactive ternary Tb3+/Zn2+ centered hybrids with p-tert-butylcalix[4]arene functionalized Si–O bridge and polyvinylpyridine , 2010 .

[2]  Koen Binnemans,et al.  Lanthanide-based luminescent hybrid materials. , 2009, Chemical reviews.

[3]  Xiaofei Qiao,et al.  Hybrid materials of lanthanide centers/functionalized 2-thenoyltrifluoroacetone/silicon-oxygen network/polymeric chain: coordination bonded assembly, physical characterization, and photoluminescence. , 2009, Inorganic chemistry.

[4]  Haifeng Lu,et al.  Functionalization of calix[4]arene as a molecular bridge to assemble luminescent chemically bonded rare-earth hybrid systems. , 2009, Inorganic chemistry.

[5]  Rute A. S. Ferreira,et al.  Lanthanide‐Containing Light‐Emitting Organic–Inorganic Hybrids: A Bet on the Future , 2009, Advanced materials.

[6]  V. Bermudez,et al.  Dual role of a di-urethanesil hybrid doped with europium β-diketonate complexes containing either water ligands or a bulky chelating ligand , 2009 .

[7]  B. Yan,et al.  Molecular construction, characterization, and photophysical properties of supramolecular lanthanide-calix[4]arene covalently bonded hybrid systems. , 2009, Inorganic chemistry.

[8]  Xiaofei Qiao,et al.  Assembly, characterization, and photoluminescence of hybrids containing europium(III) complexes covalently bonded to inorganic Si-O networks/organic polymers by modified beta-diketone. , 2008, The journal of physical chemistry. B.

[9]  Xiaofei Qiao,et al.  Rare-earth/inorganic/organic polymeric hybrid materials: molecular assembly, regular microstructure and photoluminescence. , 2007, The journal of physical chemistry. B.

[10]  C. Serre,et al.  Comparative study of two layered lanthanide dicarboxylates based on europium(III) dimers , 2007 .

[11]  Rute A. S. Ferreira,et al.  Energy Transfer and Emission Quantum Yields of Organic−Inorganic Hybrids Lacking Metal Activator Centers , 2007 .

[12]  U. Pischel,et al.  Calix[4]azacrowns as novel molecular scaffolds for the generation of visible and near-infrared lanthanide luminescence. , 2006, Inorganic chemistry.

[13]  Qi Zhang,et al.  Combinatorial study of cofluorescence of rare earth organic complexes doped in the poly(methyl methacrylate) matrix. , 2005, Journal of combinatorial chemistry.

[14]  A. Speghini,et al.  Variation of Fluorescence Lifetimes and Judd-Ofelt Parameters between Eu3+ Doped Bulk and Nanocrystalline Cubic Lu2O3 , 2004 .

[15]  P. Beer,et al.  Luminescent ruthenium(II) bipyridine-calix[4]arene complexes as receptors for lanthanide cations. , 2004, Inorganic chemistry.

[16]  Jeffery T. Davis,et al.  Water-mediated association provides an ion pair receptor. , 2003, Journal of the American Chemical Society.

[17]  R. Laine,et al.  Organic/Inorganic Imide Nanocomposites from Aminophenylsilsesquioxanes , 2003 .

[18]  A. Siouffi,et al.  Silica gel-based monoliths prepared by the sol-gel method: facts and figures. , 2003, Journal of chromatography. A.

[19]  Y. Kai,et al.  Luminescent Polymer Containing the Eu(III) Complex Having Fast Radiation Rate and High Emission Quantum Efficiency , 2003 .

[20]  M. Ward,et al.  Visible-light sensitisation of near-infrared luminescence from Yb(III), Nd(III) and Er(III) complexes of 3,6-bis(2-pyridyl)tetrazine , 2003 .

[21]  R. Zhou,et al.  Effect of rare earths on the hydrogenation properties of p-chloronitrobenzene over polymer-anchored platinum catalysts , 2003 .

[22]  Wen‐Chang Chen,et al.  Synthesis and characterization of organic–inorganic hybrid thin films from poly(acrylic) and monodispersed colloidal silica , 2003 .

[23]  Rute A. S. Ferreira,et al.  Novel lanthanide luminescent materials based on complexes of 3-hydroxypicolinic acid and silica nanoparticles , 2003 .

[24]  A. Malik Advances in sol‐gel based columns for capillary electrochromatography: Sol‐gel open‐tubular columns , 2002, Electrophoresis.

[25]  J. Bünzli,et al.  A p-tert-butylcalix[6]arene bearing phosphinoyl pendant arms for the complexation and sensitisation of lanthanide ions , 2002 .

[26]  P. Minoofar,et al.  Placement and characterization of pairs of luminescent molecules in spatially separated regions of nanostructured thin films. , 2002, Journal of the American Chemical Society.

[27]  B. Kim,et al.  Design and synthesis of calix[4]arene–nucleoside hybrids , 2002 .

[28]  Jun Lin,et al.  Preparation and Luminescence Properties of Hybrid Materials Containing Europium(III) Complexes Covalently Bonded to a Silica Matrix , 2002 .

[29]  S. F. Oliveira,et al.  Influence of the N-[methylpyridyl]acetamide ligands on the photoluminescent properties of Eu(III)-perchlorate complexes , 2002 .

[30]  J. Verhoeven,et al.  The emission spectrum and the radiative lifetime of Eu3+ in luminescent lanthanide complexes , 2002 .

[31]  K. Adachi,et al.  Polymer hybrids of functionalized silsesquioxanes and organic polymers utilizing the sol-gel reaction of tetramethoxysilane , 2002 .

[32]  Zhiwei Yang,et al.  Cyclodextrin dimers as cleavable carriers of photodynamic sensitizers. , 2001, Journal of the American Chemical Society.

[33]  J. Bünzli,et al.  A p-tert-butylcalix[4]arene functionalised at its lower rim with ether-amide pendant arms acts as an inorganic-organic receptor: structural and photophysical properties of its lanthanide complexes , 2001 .

[34]  H. Zhang,et al.  Cooperative multiple recognition by novel calix[4]arene-tethered beta-cyclodextrin and calix[4]arene-bridged bis(beta-cyclodextrin). , 2001, The Journal of organic chemistry.

[35]  Gérard Férey,et al.  Microporous Solids: From Organically Templated Inorganic Skeletons to Hybrid Frameworks...Ecumenism in Chemistry , 2001 .

[36]  S. Ribeiro,et al.  Energy-transfer mechanisms and emission quantum yields in Eu3+-based siloxane-poly(oxyethylene) nanohybrids , 2001 .

[37]  A. Craievich,et al.  Structure and luminescence of Eu3+-doped class I siloxane-poly(ethylene glycol) hybrids , 2001 .

[38]  David E Reichert,et al.  β-Cyclodextrin dimers as potential tumor pretargeting agents , 2001 .

[39]  F. V. van Veggel,et al.  Transition Metal Complexes as Photosensitizers for Near-Infrared Lanthanide Luminescence. , 2000, Angewandte Chemie.

[40]  J. Harrowfield,et al.  Calixarenes as scaffolds: introduction of tridentate rare earth metal binding units into calix[4]arene. , 2000, Inorganic chemistry.

[41]  Hongjie Zhang,et al.  Preparation and luminescence properties of sol-gel hybrid materials incorporated with europium complexes , 2000 .

[42]  D. Reinhoudt,et al.  A Systematic Study of the Photophysical Processes in Polydentate Triphenylene-Functionalized Eu3+, Tb3+, Nd3+, Yb3+, and Er3+ Complexes , 2000 .

[43]  M. Baaden,et al.  Calix[4]arenes as selective extracting agents. An NMR dynamic and conformational investigation of the lanthanide(III) and thorium(IV) complexes. , 2000, Inorganic chemistry.

[44]  Y. Men,et al.  Nanostructured hybrid organic-inorganic lanthanide complex films produced in situ via a sol-gel approach , 2000 .

[45]  R. Mahiou,et al.  Luminescence behavior of sol-gel-derived hybrid materials resulting from covalent grafting of a chromophore unit to different organically modified alkoxysilanes , 2000 .

[46]  R. Longo,et al.  Spectroscopic properties and design of highly luminescent lanthanide coordination complexes , 2000 .

[47]  Zhan-Ting Li,et al.  Self-Assembling Calix[4]arene [2]Catenanes. Preorganization, Conformation, Selectivity, and Efficiency. , 1999, The Journal of organic chemistry.

[48]  T. Suratwala,et al.  Silylated Coumarin Dyes in Sol-Gel Hosts. 1. Structure and Environmental Factors on Fluorescent Properties , 1998 .

[49]  H. Brito,et al.  Spectroscopic properties of a new light-converting device Eu(thenoyltrifluoroacetonate)3 2(dibenzyl sulfoxide). A theoretical analysis based on structural data obtained from a sparkle model , 1997 .

[50]  M. Samoć,et al.  Comparison of the Linear and Nonlinear Optical Properties of Poly(p-phenylenevinylene)/Sol−Gel Composites Derived from Tetramethoxysilane and Methyltrimethoxysilane , 1996 .

[51]  D. Diamond Calixarene-based sensing agents , 1996 .

[52]  S. Tsutsumi,et al.  Luminescence Properties of Divalent Europium Complexes of Polymer Ligands Containing (2.2.2) and (2.2.1) Cryptand Units. , 1994 .

[53]  J. Georges,et al.  Lanthanide-sensitized luminescence and applications to the determination of organic analytes : a review , 1993 .

[54]  W. Horrocks,et al.  Lanthanide ion luminescence as a probe of DNA structure. 2. Non- guanine-containing oligomers and nucleotides. , 1992, Journal of inorganic biochemistry.

[55]  N. Zumbulyadis,et al.  Polyphosphazene molecular composites. 1. In situ polymerization of tetraethoxysilane , 1992 .

[56]  Y. Ci,et al.  Fluorescence reaction of terbium(III) with nucleic acids in the presence of phenanthroline , 1991 .

[57]  G. Blasse,et al.  Rare-earth ions adsorbed onto porous glass: luminescence as a characterizing tool , 1990 .

[58]  J. E. Mark,et al.  Comparisons among the reinforcing effects provided by various silica-based fillers in a siloxane elastomer , 1989 .

[59]  F. S. Richardson,et al.  Detailed analysis of the optical absorption and emission spectra of europium(3+) in the trigonal (C3) Eu(DBM)3.H2O system , 1983 .

[60]  T. Shepherd,et al.  Evaluation of the intramolecular energy transfer rate constants in crystalline Eu(hfaa)4ButNH3 , 1975 .

[61]  Masanobu Wada,et al.  Relations between Intramolecular Energy Transfer Efficiencies and Triplet State Energies in Rare Earth β-diketone Chelates , 1970 .

[62]  D. L. Dexter A Theory of Sensitized Luminescence in Solids , 1953 .