The Spaceborne Imaging Spectrometer Desis: Data Access and Scientific Applications

The DLR Earth Sensing Imaging Spectrometer (DESIS) is a space-based instrument installed and operated on the International Space Station (ISS) [1]. This space mission is the achievement of the collaboration between the German Aerospace Center (DLR) and the US company Teledyne Brown Engineering (TBE). DLR has developed the instrument and the software for data processing [2], while TBE provides the Multi-User System for Earth Sensing (MUSES) platform, where DESIS is installed, and the infrastructure for operation and data tasking [3].

[1]  R. Richter A spatially adaptive fast atmospheric correction algorithm , 1996 .

[2]  Rudolf Richter,et al.  Data Products, Quality and Validation of the DLR Earth Sensing Imaging Spectrometer (DESIS) , 2019, Sensors.

[3]  Peter Gege,et al.  WASI-2D: A software tool for regionally optimized analysis of imaging spectrometer data from deep and shallow waters , 2014, Comput. Geosci..

[4]  Uta Heiden,et al.  THE NEW HYPERSPECTRAL SENSOR DESIS ON THE MULTI-PAYLOAD PLATFORM MUSES INSTALLED ON THE ISS , 2016 .

[5]  Derek Rogge,et al.  Building an exposed soil composite processor (SCMaP) for mapping spatial and temporal characteristics of soils with Landsat imagery (1984–2014) , 2018 .

[6]  Martin Bachmann,et al.  Spatial Sub-Sampling Using Local Endmembers for Adapting OSP and SSEE for Large-Scale Hyperspectral Surveys , 2012, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[7]  Rupert Müller,et al.  The Instrument Design of the DLR Earth Sensing Imaging Spectrometer (DESIS) , 2019, Sensors.

[8]  Rudolf Richter Atmospheric Correction Methods for Optical Remote Sensing Imagery of Land , 2011 .

[9]  Agnieszka Bialek,et al.  RadCalNet: A Radiometric Calibration Network for Earth Observing Imagers Operating in the Visible to Shortwave Infrared Spectral Range , 2019, Remote. Sens..

[10]  P. Reinartz,et al.  Automated Georeferencing of Optical Satellite Data with Integrated Sensor Model Improvement , 2012 .

[11]  M. Bachmann Automatisierte Ableitung von Bodenbedeckungsgraden durch MESMA-Entmischung , 2007 .

[12]  Rudolf Richter,et al.  PACO: Python-Based Atmospheric Correction , 2020, Sensors.

[13]  Juliane Huth,et al.  Earth Observation Based Monitoring of Forests in Germany: A Review , 2020, Remote. Sens..