The geometry of SDP-exactness in quadratic optimization

Consider the problem of minimizing a quadratic objective subject to quadratic equations. We study the semialgebraic region of objective functions for which this problem is solved by its semidefinite relaxation. For the Euclidean distance problem, this is a bundle of spectrahedral shadows surrounding the given variety. We characterize the algebraic boundary of this region and we derive a formula for its degree.

[1]  Michel X. Goemans,et al.  Semideenite Programming in Combinatorial Optimization , 1999 .

[2]  D. Mumford Algebraic Geometry I: Complex Projective Varieties , 1981 .

[3]  Rekha R. Thomas,et al.  Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..

[4]  S. Poljak,et al.  On a positive semidefinite relaxation of the cut polytope , 1995 .

[5]  Pablo A. Parrilo,et al.  Convex algebraic geometry and semidefinite optimization , 2013, ISSAC '13.

[6]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[7]  Claus Scheiderer,et al.  Spectrahedral Shadows , 2016, SIAM J. Appl. Algebra Geom..

[8]  Rekha R. Thomas,et al.  Semidefinite Optimization and Convex Algebraic Geometry , 2012 .

[9]  Rekha R. Thomas,et al.  On the local stability of semidefinite relaxations , 2017, Mathematical Programming.

[10]  Joe Harris,et al.  On symmetric and skew-symmetric determinantal varieties , 1984 .

[11]  W. Degen,et al.  The Cut Locus of an Ellipsoid , 1997 .

[12]  Kristian Ranestad,et al.  A general formula for the algebraic degree in semidefinite programming , 2007, math/0701877.

[13]  J. Gallier Quadratic Optimization Problems , 2020, Linear Algebra and Optimization with Applications to Machine Learning.

[14]  Bernd Sturmfels,et al.  The algebraic degree of semidefinite programming , 2010, Math. Program..

[15]  Bernd Sturmfels,et al.  Generic Spectrahedral Shadows , 2014, SIAM J. Optim..

[16]  Jiawang Nie,et al.  Algebraic Degree of Polynomial Optimization , 2008, SIAM J. Optim..

[17]  Bernd Sturmfels,et al.  Voronoi Cells of Varieties , 2018, J. Symb. Comput..

[18]  David P. Williamson,et al.  Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming , 1995, JACM.

[19]  Rekha R. Thomas,et al.  The Euclidean Distance Degree of an Algebraic Variety , 2013, Foundations of Computational Mathematics.

[20]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[21]  Gregory G. Smith,et al.  Sums of squares and varieties of minimal degree , 2013, 1308.0751.