The Importance of Testing the Quality and Authenticity of Food Products: The Example of Honey

The aim of this study was to review methods of honey testing in the assessment of its quality and authenticity. The quality of honey, like other food products, is multidimensional. This quality can be assessed not only on the basis of the characteristics evaluated by the consumer during purchase and consumption, but also on the basis of various physicochemical parameters. A number of research methods are used to verify the quality of honeys and to confirm their authenticity. Obligatory methods of assessing the quality of honey are usually described in legal acts. On the other hand, other, non-normative methods of honey quality assessment are used worldwide; they can be used to determine not only the elementary chemical composition of individual types of honey, but also the biological activity of honey and its components. However, so far, there has been no systematization of these methods together with a discussion of problems encountered when determining the authenticity of honeys. Therefore, the aim of our study was to collect information on the methods of assessing the quality and authenticity of honeys, and to identify the problems that occur during this assessment. As a result, a tabular summary of various research methods was created.

[1]  Yuan Wang,et al.  Determination of endogenous phenolic compounds in honey by HPLC-MS/MS , 2023, LWT.

[2]  M. Tessari,et al.  Automatic NMR-based protocol for assessment of honey authenticity. , 2023, Food chemistry.

[3]  X. Xue,et al.  Comprehensive study of volatile compounds of rare Leucosceptrum canum Smith honey: Aroma profiling and characteristic compound screening via GC-MS and GC-MS/MS. , 2023, Food research international.

[4]  Y. Yusof,et al.  Differentiation of High-Fructose Corn Syrup Adulterated Kelulut Honey Using Physicochemical, Rheological, and Antibacterial Parameters , 2023, Foods.

[5]  Fangjian Ning,et al.  Identification of the botanical origins of honey based on nanoliter electrospray ionization mass spectrometry. , 2023, Food chemistry.

[6]  M. Reis,et al.  Internal reflectance cell fluorescence measurement combined with multi-way analysis to detect fluorescence signatures of undiluted honeys and a fusion of fluorescence and NIR to enhance predictability. , 2022, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[7]  Vikas Nanda,et al.  A comprehensive review on unethical honey: Validation by emerging techniques , 2022, Food Control.

[8]  J. Bernal,et al.  Recent trends in the analysis of honey constituents. , 2022, Food chemistry.

[9]  Ramona Suharoschi,et al.  Honey botanical origin and honey-specific protein pattern: Characterization of some European honeys , 2021, LWT.

[10]  C. Pappas,et al.  The Use of Right Angle Fluorescence Spectroscopy to Distinguish the Botanical Origin of Greek Common Honey Varieties , 2021, Applied Sciences.

[11]  L. V. Gonzaga,et al.  Quality changes during long-term storage of a peculiar Brazilian honeydew honey: “Bracatinga” , 2021, Journal of Food Composition and Analysis.

[12]  E. Vozáry,et al.  Dielectrical properties of Hungarian acacia honeys , 2020, Progress in Agricultural Engineering Sciences.

[13]  M. Popova,et al.  NMR Profiling of North Macedonian and Bulgarian Honeys for Detection of Botanical and Geographical Origin , 2020, Molecules.

[14]  L. V. Gonzaga,et al.  Effect of different storage conditions on physicochemical and bioactive characteristics of thermally processed stingless bee honeys , 2020 .

[15]  S. Falcão,et al.  Description of the volatile fraction of Erica honey from the northwest of the Iberian Peninsula. , 2020, Food chemistry.

[16]  F. Marini,et al.  Classification of honey applying high performance liquid chromatography, near-infrared spectroscopy and chemometrics , 2020 .

[17]  Mayara Schulz,et al.  Stability of Brazilian Apis mellifera L. honey during prolonged storage: Physicochemical parameters and bioactive compounds , 2020 .

[18]  D. U. Nagy,et al.  Melissopalynology, antioxidant activity and multielement analysis of two types of early spring honeys from Hungary , 2020 .

[19]  K. Badu,et al.  A Comparative Study on the Antimicrobial Activity of Natural and Artificial (Adulterated) Honey Produced in Some Localities in Ghana , 2020 .

[20]  V. Domenici,et al.  Front-Face Fluorescence of Honey of Different Botanic Origin: A Case Study from Tuscany (Italy) , 2020, Applied Sciences.

[21]  A. Wilczyńska,et al.  The Use of Fluorescence Spectrometry to Determine the Botanical Origin of Filtered Honeys , 2020, Molecules.

[22]  B. Lyoussi,et al.  Physicochemical Properties, Mineral Content, Antioxidant Activities, and Microbiological Quality of Bupleurum spinosum Gouan Honey from the Middle Atlas in Morocco , 2020 .

[23]  S. Rohn,et al.  Antioxidant Activity and Phenolic Profile of Selected Organic and Conventional Honeys from Poland , 2020, Antioxidants.

[24]  Federico Marini,et al.  Multivariate statistics: Considerations and confidences in food authenticity problems , 2019, Food Control.

[25]  J. Spink,et al.  Food Fraud Prevention: Introduction, Implementation, and Management , 2019 .

[26]  E. Haubruge,et al.  Volatile Profile and Physico-Chemical Analysis of Acacia Honey for Geographical Origin and Nutritional Value Determination , 2019, Foods.

[27]  M. Stocchero,et al.  NMR assessment of European acacia honey origin and composition of EU-blend based on geographical floral markers. , 2019, Food chemistry.

[28]  R. Perestrelo,et al.  Food fingerprints - A valuable tool to monitor food authenticity and safety. , 2019, Food chemistry.

[29]  K. Pentoś,et al.  The use of dielectric honey features for overheating diagnostics , 2019, Acta Alimentaria.

[30]  Hongbo Song,et al.  Discrimination of geographical origins of Chinese acacia honey using complex 13C/12C, oligosaccharides and polyphenols. , 2019, Food chemistry.

[31]  J. Quiles,et al.  Phenolic Compounds in Honey and Their Associated Health Benefits: A Review , 2018, Molecules.

[32]  M. Tomczyk,et al.  Antioxidant Activity as Biomarker of Honey Variety , 2018, Molecules.

[33]  M. Dramićanin,et al.  Detection of Adulterated Honey by Fluorescence Excitation-Emission Matrices , 2018, Journal of Spectroscopy.

[34]  K. Duangmal,et al.  Melissopalynological analysis of stingless bee (Tetragonula pagdeni) honey in Eastern Thailand , 2018, Journal of Asia-Pacific Entomology.

[35]  K. Pentoś,et al.  Dielectric properties of honey: the potential usability for quality assessment , 2018, European Food Research and Technology.

[36]  R. Bandyopadhyay,et al.  Voltammetric sensor for electrochemical determination of the floral origin of honey based on a zinc oxide nanoparticle modified carbon paste electrode , 2018 .

[37]  O. Laaksonen,et al.  Sensory and chemical profiles of Finnish honeys of different botanical origins and consumer preferences. , 2018, Food chemistry.

[38]  I. Jerković,et al.  Unlocking Phacelia tanacetifolia Benth. honey characterization through melissopalynological analysis, color determination and volatiles chemical profiling. , 2018, Food research international.

[39]  S. Medina,et al.  Untargeted metabolomics reveals specific withanolides and fatty acyl glycoside as tentative metabolites to differentiate organic and conventional Physalis peruviana fruits. , 2018, Food chemistry.

[40]  M. Madruga,et al.  Sensory and volatile profiles of monofloral honeys produced by native stingless bees of the brazilian semiarid region. , 2018, Food research international.

[41]  Alain Maquet,et al.  Metabolomics for organic food authentication: Results from a long-term field study in carrots , 2018, Food chemistry.

[42]  H. Haron,et al.  Physical Properties, Antioxidant Content and Anti-Oxidative Activities of Malaysian Stingless Kelulut (Trigona spp.) Honey , 2017 .

[43]  E. Schievano,et al.  Entomological authentication of stingless bee honey by 1H NMR-based metabolomics approach , 2017 .

[44]  Y. R. Torres,et al.  Comparative analysis of the volatile composition of honeys from Brazilian stingless bees by static headspace GC-MS. , 2017, Food research international.

[45]  M. Bakar,et al.  Physicochemical and antioxidant potential of raw unprocessed honey from Malaysian stingless bees , 2017 .

[46]  P. Skałecki,et al.  Hydroxymethylfurfural content, diastase activity and colour of multifloral honeys in relation to origin and storage time , 2017 .

[47]  Joana S. Amaral,et al.  A Comprehensive Review on the Main Honey Authentication Issues: Production and Origin. , 2017, Comprehensive reviews in food science and food safety.

[48]  A. Conchado,et al.  Volatile profile in the accurate labelling of monofloral honey. The case of lavender and thyme honey. , 2017, Food chemistry.

[49]  J. Kowalska,et al.  Zastosowanie metod fizykochemicznych i chemometrycznych do oceny jakości i autentyczności botanicznej miodów gryczanych , 2017 .

[50]  M. Wesołowska,et al.  The Use of the PHOTOCHEM Device in Evaluation of Antioxidant Activity of Polish Honey , 2017, Food Analytical Methods.

[51]  M. Halagarda,et al.  A new model to identify botanical origin of Polish honeys based on the physicochemical parameters and chemometric analysis , 2017 .

[52]  Josep Rubert,et al.  Saffron authentication based on liquid chromatography high resolution tandem mass spectrometry and multivariate data analysis. , 2016, Food chemistry.

[53]  Jiyang Dong,et al.  Origin Identification and Quantitative Analysis of Honeys by Nuclear Magnetic Resonance and Chemometric Techniques , 2016, Food Analytical Methods.

[54]  A. Gliszczyńska-Świgło,et al.  Directions of Colour Changes of Nectar Honeys Depending on Honey Type and Storage Conditions , 2015 .

[55]  S. Masry,et al.  Physicochemical characteristics of honey from different origins , 2015 .

[56]  K. Pentoś,et al.  The identification of relationships between selected honey parameters by extracting the contribution of independent variables in a neural network model , 2015, European Food Research and Technology.

[57]  Saskia M. van Ruth,et al.  Discrimination of Polish unifloral honeys using overall PTR-MS and HPLC fingerprints combined with chemometrics , 2015 .

[58]  Dima Al-Diab,et al.  Effect of storage and thermal treatment on the quality of some local brands of honey from Latakia markets , 2015 .

[59]  Rasmus Bro,et al.  Fluorescence spectroscopy coupled with PARAFAC and PLS DA for characterization and classification of honey. , 2015, Food chemistry.

[60]  Sunita Mishra,et al.  Prediction of Adulteration in Honey Using Rheological Parameters , 2015 .

[61]  Stavros Kontakos,et al.  Botanical discrimination of Greek unifloral honeys with physico-chemical and chemometric analyses. , 2014, Food chemistry.

[62]  Katarzyna Pentos,et al.  The identification of the relationship between chemical and electrical parameters of honeys using artificial neural networks , 2014, Comput. Biol. Medicine.

[63]  S. Karaman,et al.  Steady, dynamic and creep rheological analysis as a novel approach to detect honey adulteration by fructose and saccharose syrups: Correlations with HPLC-RID results. , 2014, Food research international.

[64]  M. Kontominas,et al.  Floral authentication of Greek unifloral honeys based on the combination of phenolic compounds, physicochemical parameters and chemometrics , 2014 .

[65]  Rasmus Bro,et al.  Determination of the Botanical Origin of Honey by Front-Face Synchronous Fluorescence Spectroscopy , 2014, Applied spectroscopy.

[66]  K. Everstine,et al.  Economically motivated adulteration (EMA) of food: common characteristics of EMA incidents. , 2013, Journal of food protection.

[67]  O. S. Toker,et al.  Quality characterization of artisanal and retail Turkish blossom honeys: Determination of physicochemical, microbiological, bioactive properties and aroma profile , 2013 .

[68]  F. A. R. Santos,et al.  Phenolic compounds, melissopalynological, physicochemical analysis and antioxidant activity of jandaíra (Melipona subnitida) honey , 2013 .

[69]  A. Ferreira,et al.  Identification of components of Brazilian honey by 1H NMR and classification of its botanical origin by chemometric methods , 2012 .

[70]  Y. Yang,et al.  Melissopalynological origin determination and volatile composition analysis of Corsican “chestnut grove” honeys , 2012, Food Chemistry.

[71]  R. Consonni,et al.  NMR characterization of saccharides in Italian honeys of different floral sources. , 2012, Journal of agricultural and food chemistry.

[72]  M. Galceran,et al.  5-Hydroxymethylfurfural content in foodstuffs determined by micellar electrokinetic chromatography. , 2011, Food chemistry.

[73]  P. Nikolov,et al.  Reversible and covalent binding of 5-(hydroxymethyl)-2-furaldehyde (HMF) with lysine and selected amino acids. , 2011, Journal of agricultural and food chemistry.

[74]  Zhuoyong Zhang,et al.  Detection of adulterants such as sweeteners materials in honey using near-infrared spectroscopy and chemometrics , 2010 .

[75]  A. Charlton,et al.  Quantitative NMR spectroscopy for the rapid measurement of methylglyoxal in manuka honey , 2010 .

[76]  G. Downey,et al.  Near infrared spectral fingerprinting for confirmation of claimed PDO provenance of honey , 2009 .

[77]  J. Bosset,et al.  Authentication of the botanical origin of honey using profiles of classical measurands and discriminant analysis , 2007, Apidologie.

[78]  Ana I Cabañero,et al.  Liquid chromatography coupled to isotope ratio mass spectrometry: a new perspective on honey adulteration detection. , 2006, Journal of agricultural and food chemistry.

[79]  Werner Luginbühl,et al.  Authentication of the botanical and geographical origin of honey by front-face fluorescence spectroscopy. , 2006, Journal of agricultural and food chemistry.

[80]  Werner Luginbühl,et al.  Authentication of the botanical origin of honey by near-infrared spectroscopy. , 2006, Journal of agricultural and food chemistry.

[81]  A. Moing,et al.  Sucrose, glucose, and fructose extraction in aqueous carrot root extracts prepared at different temperatures by means of direct NMR measurements. , 2006, Journal of agricultural and food chemistry.

[82]  J. Bosset,et al.  Quantitative analysis of physical and chemical measurands in honey by mid-infrared spectrometry , 2006 .

[83]  Gerard Downey,et al.  Potential of near Infrared Transflectance Spectroscopy to Detect Adulteration of Irish Honey by Beet Invert Syrup and High Fructose Corn Syrup , 2006 .

[84]  Aline Meda,et al.  Determination of the total phenolic, flavonoid and proline contents in Burkina Fasan honey, as well as their radical scavenging activity. , 2005 .

[85]  J. Bosset,et al.  Authentication of the botanical origin of honey by front-face fluorescence spectroscopy. A preliminary study. , 2005, Journal of agricultural and food chemistry.

[86]  F. Heredia,et al.  Characterisation of Moroccan unifloral honeys using multivariate analysis , 2003 .

[87]  M. Gerboles,et al.  Contribution of dynamic headspace GC–MS analysis of aroma compounds to authenticity testing of honey , 2001 .

[88]  G. Gall,et al.  Discrimination between orange juice and pulp wash by (1)H Nuclear Magnetic Resonance spectroscopy: identification of marker compounds. , 2001, Journal of agricultural and food chemistry.

[89]  Harro A. J. Meijer,et al.  Adulteration of honey: relation between microscopic analysis and $\delta^{13}$C measurements , 2000 .

[90]  M. Kontominas,et al.  A decisive strategy for monofloral honey authentication using analysis of volatile compounds and pattern recognition techniques , 2020 .

[91]  E. Martyniuk,et al.  Wybrane metody wyróżniania produktów spożywczych na rynku , 2019, Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality.

[92]  E. Rosiak,et al.  Właściwości probiotyczne i prebiotyczne miodów pszczelich w aspekcie ich jakości i bezpieczeństwa zdrowotnego , 2019, Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality.

[93]  M. Grzybowska-Brzezińska Preferencje konsumentów wobec atrybutów produktów żywnościowych , 2018 .

[94]  I. Pasias,et al.  HMF and diastase activity in honeys: A fully validated approach and a chemometric analysis for identification of honey freshness and adulteration. , 2017, Food chemistry.

[95]  K. Pentoś,et al.  Dielectric properties of selected wood species in Poland , 2017 .

[96]  M. Wesołowska,et al.  Aktywność i stabilność termiczna diastazy występującej w podkarpackich miodach odmianowych , 2017, Zywnosc Nauka Technologia Jakosc/Food Science Technology Quality.

[97]  K. Pentoś,et al.  The influence of crystallization and temperature on electrical parameters of honey , 2016 .

[98]  M. Mézes,et al.  Colour identification of honey and methodical development of its instrumental measuring , 2016 .

[99]  Katarzyna Pentos,et al.  The methods of extracting the contribution of variables in artificial neural network models - Comparison of inherent instability , 2016, Comput. Electron. Agric..

[100]  A. Przybylska,et al.  Wpływ zmian temperatury przechowywania na zawartość 5-hydroksymetylofurfuralu w odmianowych i wielokwiatowych miodach pszczelich , 2012 .

[101]  A. Wilczyńska Wpływ procesów technologicznych na jakość miodów pszczelich - zmiany parametrów barwy oraz zawartości HMF pod wpływem przechowywania i ogrzewania , 2011 .

[102]  I. Przetaczek-Rożnowska,et al.  Wykrywanie zafałszowań żywności , 2011 .

[103]  S. Popek,et al.  Próba zastosowania oceny poziomu 5-HMF jako wskaźnika jakości miodu pszczelego typu spadziowego , 2011 .

[104]  I. Jasicka-Misiak,et al.  Chemiczne markery miodów odmianowych , 2011 .

[105]  J. Kowalska,et al.  Badanie korelacji pomiędzy przewodnością elektryczną i zawartością popiołu w wybranych miodach pszczelich , 2011 .

[106]  A. Szterk,et al.  Spektroskopia NIR on-line w kontroli procesów produkcji żywności , 2010 .

[107]  D. Łuczycka Właściwości dielektryczne wybranych odmian miodu , 2010 .

[108]  A. Wilczyńska Phenolic content and antioxidant activity of different types of Polish honey - A short report , 2010 .

[109]  P. Intipunya,et al.  Effects of crystallization and processing on sensory and physicochemical qualities of Thai sunflower honey. , 2009 .

[110]  S. Gębala Measurements of solution fluorescence - a new concept , 2009 .

[111]  J. De Baerdemaeker,et al.  The use of front face fluorescence spectroscopy to classify the botanical origin of honey samples produced in Switzerland , 2007 .

[112]  Louis S. Santiago,et al.  A review of volatile analytical methods for determining the botanical origin of honey , 2007 .

[113]  Pilar Buera,et al.  Pattern of pH and electrical conductivity upon honey dilution as a complementary tool for discriminating geographical origin of honeys , 2007 .

[114]  Ahmet Umut Güler,et al.  Determination of important biochemical properties of honey to discriminate pure and adulterated honey with sucrose (Saccharum officinarum L.) syrup , 2007 .

[115]  E. Majewska,et al.  Profile zwiazkow lotnych wybranych miodow pszczelich , 2007 .

[116]  M. Śmiechowska,et al.  Wybrane problemy autentyczności i identyfikowalności żywności ekologicznej , 2007 .

[117]  I. Floris,et al.  Il contenuto di etanolo nel miele per la valutazione di processi fermentativi , 2006 .

[118]  L. P. Oddo,et al.  Physico-chemical methods for the characterisation of unifloral honeys: a review , 2004 .

[119]  T. Szczęsna Problemy z jakoscia miodu na rynku krajowym , 2003 .

[120]  A. Verzera,et al.  SPME-GC-MS analysis of honey volatile components for the characterization of different floral origin , 2001 .

[121]  I. Popov,et al.  Antioxidative homeostasis: characterization by means of chemiluminescent technique. , 1999, Methods in enzymology.

[122]  J. Louveaux,et al.  Methods of Melissopalynology , 1978 .