Mechanized quantifier elimination for linear real-arithmetic in Isabelle / HOL
暂无分享,去创建一个
[1] Michael J. C. Gordon,et al. Edinburgh LCF: A mechanised logic of computation , 1979 .
[2] Hendrik Pieter Barendregt,et al. Autarkic Computations in Formal Proofs , 2002, Journal of Automated Reasoning.
[3] Th. Motzkin. Beiträge zur Theorie der linearen Ungleichungen , 1936 .
[4] Tobias Nipkow,et al. Executing Higher Order Logic , 2000, TYPES.
[5] Lawrence C. Paulson,et al. Logic And Computation , 1987 .
[6] M. Fischer,et al. SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .
[7] Benjamin Grégoire,et al. A compiled implementation of strong reduction , 2002, ICFP '02.
[8] Bruno Barras. Programming and Computing in HOL , 2000, TPHOLs.
[9] Rüdiger Loos,et al. Applying Linear Quantifier Elimination , 1993, Comput. J..
[10] Editors , 2003 .
[11] Leonard Berman,et al. The Complexity of Logical Theories , 1980, Theor. Comput. Sci..
[12] Steven Obua,et al. Importing HOL into Isabelle/HOL , 2006, IJCAR.
[13] MA John Harrison PhD. Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.
[14] Assia Mahboubi. Programming and certifying a CAD algorithm in the Coq system , 2005, Mathematics, Algorithms, Proofs.
[15] Douglas J. Howe. Computational Metatheory in Nuprl , 1988, CADE.
[16] M. Gordon,et al. Introduction to HOL: a theorem proving environment for higher order logic , 1993 .
[17] Volker Weispfenning,et al. The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.
[18] Tobias Nipkow,et al. Verifying and Reflecting Quantifier Elimination for Presburger Arithmetic , 2005, LPAR.
[19] Andrew W. Appel,et al. Dependent types ensure partial correctness of theorem provers , 2004, J. Funct. Program..
[20] Konrad Slind,et al. Function Definition in Higher-Order Logic , 1996, TPHOLs.
[21] G. Sacks. A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .
[22] Robert E. Shostak,et al. Deciding Linear Inequalities by Computing Loop Residues , 1981, JACM.
[23] John Harrison,et al. A Proof-Producing Decision Procedure for Real Arithmetic , 2005, CADE.
[24] Konrad Slind. Derivation and Use of Induction Schemes in Higher-Order Logic , 1997, TPHOLs.
[25] Tobias Nipkow,et al. Flyspeck I: Tame Graphs , 2006, IJCAR.
[26] Tobias Nipkow,et al. A Proof Assistant for Higher-Order Logic , 2002 .
[27] Jeanne Ferrante,et al. A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..
[28] J. Harrison. Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .
[29] Morten Welinder. Very Efficient Conversions , 1995, TPHOLs.
[30] Amine Chaieb,et al. Verifying Mixed Real-Integer Quantifier Elimination , 2006, IJCAR.
[31] Michael J. Maher,et al. Solving Numerical Constraints , 2001, Handbook of Automated Reasoning.
[32] George E. Collins,et al. Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .
[33] L. L. Dines. Systems of Linear Inequalities , 1919 .
[34] Sean McLaughlin,et al. An Interpretation of Isabelle/HOL in HOL Light , 2006, IJCAR.