Mechanized quantifier elimination for linear real-arithmetic in Isabelle / HOL

We integrate Ferrante and Rackoff’s quantifier elimination procedure for linear real arithmetic in Isabelle/HOL in two manners: (a) tactic-style, i.e. for every problem instance a proof is generated by invoking a series of inference rules, and (b) reflection, where the whole algorithm is implemented and verified within Isabelle/HOL. We discuss the performance obtained for both integrations.

[1]  Michael J. C. Gordon,et al.  Edinburgh LCF: A mechanised logic of computation , 1979 .

[2]  Hendrik Pieter Barendregt,et al.  Autarkic Computations in Formal Proofs , 2002, Journal of Automated Reasoning.

[3]  Th. Motzkin Beiträge zur Theorie der linearen Ungleichungen , 1936 .

[4]  Tobias Nipkow,et al.  Executing Higher Order Logic , 2000, TYPES.

[5]  Lawrence C. Paulson,et al.  Logic And Computation , 1987 .

[6]  M. Fischer,et al.  SUPER-EXPONENTIAL COMPLEXITY OF PRESBURGER ARITHMETIC , 1974 .

[7]  Benjamin Grégoire,et al.  A compiled implementation of strong reduction , 2002, ICFP '02.

[8]  Bruno Barras Programming and Computing in HOL , 2000, TPHOLs.

[9]  Rüdiger Loos,et al.  Applying Linear Quantifier Elimination , 1993, Comput. J..

[10]  Editors , 2003 .

[11]  Leonard Berman,et al.  The Complexity of Logical Theories , 1980, Theor. Comput. Sci..

[12]  Steven Obua,et al.  Importing HOL into Isabelle/HOL , 2006, IJCAR.

[13]  MA John Harrison PhD Theorem Proving with the Real Numbers , 1998, Distinguished Dissertations.

[14]  Assia Mahboubi Programming and certifying a CAD algorithm in the Coq system , 2005, Mathematics, Algorithms, Proofs.

[15]  Douglas J. Howe Computational Metatheory in Nuprl , 1988, CADE.

[16]  M. Gordon,et al.  Introduction to HOL: a theorem proving environment for higher order logic , 1993 .

[17]  Volker Weispfenning,et al.  The Complexity of Linear Problems in Fields , 1988, Journal of symbolic computation.

[18]  Tobias Nipkow,et al.  Verifying and Reflecting Quantifier Elimination for Presburger Arithmetic , 2005, LPAR.

[19]  Andrew W. Appel,et al.  Dependent types ensure partial correctness of theorem provers , 2004, J. Funct. Program..

[20]  Konrad Slind,et al.  Function Definition in Higher-Order Logic , 1996, TPHOLs.

[21]  G. Sacks A DECISION METHOD FOR ELEMENTARY ALGEBRA AND GEOMETRY , 2003 .

[22]  Robert E. Shostak,et al.  Deciding Linear Inequalities by Computing Loop Residues , 1981, JACM.

[23]  John Harrison,et al.  A Proof-Producing Decision Procedure for Real Arithmetic , 2005, CADE.

[24]  Konrad Slind Derivation and Use of Induction Schemes in Higher-Order Logic , 1997, TPHOLs.

[25]  Tobias Nipkow,et al.  Flyspeck I: Tame Graphs , 2006, IJCAR.

[26]  Tobias Nipkow,et al.  A Proof Assistant for Higher-Order Logic , 2002 .

[27]  Jeanne Ferrante,et al.  A Decision Procedure for the First Order Theory of Real Addition with Order , 1975, SIAM J. Comput..

[28]  J. Harrison Metatheory and Reflection in Theorem Proving: A Survey and Critique , 1995 .

[29]  Morten Welinder Very Efficient Conversions , 1995, TPHOLs.

[30]  Amine Chaieb,et al.  Verifying Mixed Real-Integer Quantifier Elimination , 2006, IJCAR.

[31]  Michael J. Maher,et al.  Solving Numerical Constraints , 2001, Handbook of Automated Reasoning.

[32]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[33]  L. L. Dines Systems of Linear Inequalities , 1919 .

[34]  Sean McLaughlin,et al.  An Interpretation of Isabelle/HOL in HOL Light , 2006, IJCAR.