Photoselection in polarized photolysis experiments on heme proteins.

[1]  E. Henry,et al.  Oxygen binding by single crystals of hemoglobin. , 1993, Biochemistry.

[2]  E. Henry,et al.  Molecular dynamics simulations of heme reorientational motions in myoglobin. , 1993, Biophysical journal.

[3]  A. Szabó,et al.  Theory of photoselection by intense light pulses. Influence of reorientational dynamics and chemical kinetics on absorbance measurements. , 1993, Biophysical journal.

[4]  C. M. Jones,et al.  Speed of intersubunit communication in proteins. , 1992, Biochemistry.

[5]  C. M. Jones,et al.  The role of solvent viscosity in the dynamics of protein conformational changes. , 1992, Science.

[6]  R. Hochstrasser,et al.  Determination of FeCO geometry and heme rigidity in carbonmonoxyhemoglobin using femtosecond IR spectroscopy , 1991 .

[7]  S. Boxer,et al.  Protein relaxation dynamics in human myoglobin , 1991 .

[8]  D. Kliger,et al.  ROTATIONAL DIFFUSION EFFECTS ON ABSORBANCE MEASUREMENTS: LIMITATIONS TO THE MAGIC‐ANGLE APPROACH * , 1991, Photochemistry and photobiology.

[9]  M Brunori,et al.  Dynamics of the quaternary conformational change in trout hemoglobin. , 1991, Biochemistry.

[10]  J. B. Johnson,et al.  Ligand binding to heme proteins: connection between dynamics and function. , 1991, Biochemistry.

[11]  P. Emsley,et al.  Stereochemistry of carbon monoxide binding to normal human adult and Cowtown haemoglobins. , 1990, Journal of molecular biology.

[12]  R. Hochstrasser,et al.  Direct observations of ligand dynamics in hemoglobin by subpicosecond infrared spectroscopy. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[13]  S. Lin,et al.  Orientation of carbon monoxide and structure-function relationship in carbonmonoxymyoglobin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Hochstrasser,et al.  Picosecond transient absorption study of photodissociated carboxy hemoglobin and myoglobin. , 1988, Biophysical journal.

[15]  L. P. Murray,et al.  The effect of quaternary structure on the kinetics of conformational changes and nanosecond geminate rebinding of carbon monoxide to hemoglobin. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[16]  R. Hochstrasser,et al.  A new method for picosecond time-resolved infrared spectroscopy: applications to CO photodissociation from iron porphyrins , 1987 .

[17]  C. Royer,et al.  Porphyrin dynamics in the heme-pockets of myoglobin and hemoglobin , 1987 .

[18]  Q. Gibson,et al.  Testing the two-state model: anomalous effector binding to human hemoglobin. , 1986, Biochemistry.

[19]  J. Friedman,et al.  Structure, dynamics, and reactivity in hemoglobin. , 1985, Science.

[20]  E. Henry,et al.  Nanosecond optical spectra of iron-cobalt hybrid hemoglobins: geminate recombination, conformational changes, and intersubunit communication. , 1985, Biochemistry.

[21]  M. Levitt,et al.  Molecular dynamics simulation of photodissociation of carbon monoxide from hemoglobin. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[22]  M. F. Perutz,et al.  The crystal structure of human deoxyhaemoglobin at 1.74 A resolution , 1984 .

[23]  R. Lozier,et al.  EFFECT OF PHOTOSELECTION UPON SATURATION AND THE DICHROIC RATIO IN FLASH EXPERIMENTS UPON EFFECTIVELY IMMOBILIZED SYSTEMS , 1983 .

[24]  E. Henry,et al.  Geminate recombination of carbon monoxide to myoglobin. , 1983, Journal of molecular biology.

[25]  E. Henry,et al.  Nanosecond absorption spectroscopy of hemoglobin: elementary processes in kinetic cooperativity. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Perutz,et al.  THE STRUCTURE OF HORSE METHAEMOGLOBIN AT 2.0 ANGSTROMS RESOLUTION , 1983 .

[27]  H Frauenfelder,et al.  Solvent viscosity and protein dynamics. , 1980, Biochemistry.

[28]  A. Szabó,et al.  Effect of librational motion on fluorescence depolarization and nuclear magnetic resonance relaxation in macromolecules and membranes. , 1980, Biophysical journal.

[29]  R. Hochstrasser,et al.  Spectroscopic studies of oxy- and carbonmonoxyhemoglobin after pulsed optical excitation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[30]  Philip J. Stephens,et al.  Optical spectra of oxy- and deoxyhemoglobin , 1978 .

[31]  T. Takano Structure of myoglobin refined at 2-0 A resolution. II. Structure of deoxymyoglobin from sperm whale. , 1976, Journal of molecular biology.

[32]  Q H Gibson,et al.  Quaternary conformational changes in human hemoglobin studied by laser photolysis of carboxyhemoglobin. , 1976, The Journal of biological chemistry.

[33]  W. Eaton,et al.  Optically Detected Conformational Changes in Haemoglobin Single Crystals , 1974, Nature.

[34]  W. Eaton,et al.  POLARIZED SINGLE CRYSTAL ABSORPTION SPECTRA OF CARBOXY‐ AND OXYHEMOGLOBIN , 1973, Annals of the New York Academy of Sciences.

[35]  R. Hochstrasser,et al.  Single-crystal spectra of ferrimyoglobin complexes in polarized light. , 1968, The Journal of chemical physics.

[36]  R. Hochstrasser,et al.  Electronic spectrum of single crystals of ferricytochrome-c. , 1967, The Journal of chemical physics.

[37]  C. M. Jones,et al.  Ligand binding and conformational changes measured by time-resolved absorption spectroscopy. , 1994, Methods in enzymology.

[38]  Y. Lecarpentier,et al.  Femtosecond photolysis of CO-ligated protoheme and hemoproteins: appearance of deoxy species with a 350-fsec time constant. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[39]  J. Hofrichter,et al.  Polarized absorption and linear dichroism spectroscopy of hemoglobin. , 1981, Methods in enzymology.

[40]  R. Morris,et al.  Ultra-fast recombination in nanosecond laser photolysis of carbonylhaemoglobin , 1979 .

[41]  A. C. Albrecht Polarizations and assignments of transitions: The method of photoselection , 1961 .