The Rotation and Interior Structure Experiment on the InSight Mission to Mars

The Rotation and Interior Structure Experiment (RISE) on-board the InSight mission will use the lander’s X-band (8 GHz) radio system in combination with tracking stations of the NASA Deep Space Network (DSN) to determine the rotation of Mars. RISE will measure the nutation of the Martian spin axis, detecting for the first time the effect of the liquid core of Mars and providing in turn new constraints on the core radius and density. RISE will also measure changes in the rotation rate of Mars on seasonal time-scales thereby constraining the atmospheric angular momentum budget. Finally, RISE will provide a superb tie between the cartographic and inertial reference frames. This paper describes the RISE scientific objectives and measurements, and provides the expected results of the experiment.

[1]  Christian Heipke,et al.  Topography of Mars from global mapping by HRSC high-resolution digital terrain models and orthoimages: Characteristics and performance , 2010 .

[2]  G. J. Taylor,et al.  The bulk composition of Mars , 2013 .

[3]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[4]  W. Folkner,et al.  Fluid Core Size of Mars from Detection of the Solar Tide , 2003, Science.

[5]  V. Dehant,et al.  Lander radio science experiment with a direct link between Mars and the Earth , 2012 .

[6]  Luciano Iess,et al.  Spacecraft Doppler tracking: Noise budget and accuracy achievable in precision radio science observations , 2005 .

[7]  A. Safaeinili,et al.  Total electron content in the Mars ionosphere: Temporal studies and dependence on solar EUV flux , 2010 .

[8]  J. Tromp,et al.  Theoretical Global Seismology , 1998 .

[9]  Alan Tanner,et al.  Measurements and Calibration of Tropospheric Delay at Goldstone from the Cassini Media Calibration System , 2004 .

[10]  James A. D. Connolly,et al.  Computation of phase equilibria by linear programming: A tool for geodynamic modeling and its application to subduction zone decarbonation , 2005 .

[11]  David E. Smith,et al.  Mars Orbiter Laser Altimeter: Experiment summary after the first year of global mapping of Mars , 2001 .

[12]  Véronique Dehant,et al.  Geodesy constraints on the interior structure and composition of Mars , 2011 .

[13]  B. Chao,et al.  Variations of Mars gravitational field and rotation due to seasonal CO2 exchange , 1990 .

[14]  A. Rivoldini,et al.  The interior structure of Mercury constrained by the low-degree gravity field and the rotation of Mercury , 2013 .

[15]  Roland Martin,et al.  Atmospheric Science with InSight , 2018, Space Science Reviews.

[16]  V. Dehant,et al.  Chandler wobble and Free Core Nutation for Mars , 2000 .

[17]  William M. Folkner,et al.  An improved JPL Mars gravity field and orientation from Mars orbiter and lander tracking data , 2016 .

[18]  Véronique Dehant,et al.  New constraints on Mars rotation determined from radiometric tracking of the Opportunity Mars Exploration Rover , 2014 .

[19]  H. J. Moore,et al.  Assessment of Mars Pathfinder landing site predictions , 1999 .

[20]  T. Sasao,et al.  A Simple Theory on the Dynamical Effects of a Stratified Fluid Core upon Nutational Motion of the Earth , 1980 .

[21]  A. Chicarro,et al.  Revealing Mars' deep interior: Future geodesy missions using radio links between landers, orbiters, and the Earth , 2011 .

[22]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[23]  Anthony J. Mannucci,et al.  A global mapping technique for GPS‐derived ionospheric total electron content measurements , 1998 .

[24]  Véronique Dehant,et al.  Atmospheric angular momentum variations of Earth, Mars and Venus at seasonal time scales , 2011 .

[25]  Alan B. Tanner,et al.  Atmospheric Media Calibration for the Deep Space Network , 2007, Proceedings of the IEEE.

[26]  G. Balmino,et al.  Lander radioscience for obtaining the rotation and orientation of Mars , 2009 .

[27]  F. Roosbeek Analytical developments of rigid Mars nutation and tide generating potential series , 1999 .

[28]  W. Folkner,et al.  Interior structure and seasonal mass redistribution of Mars from radio tracking of Mars Pathfinder. , 1997, Science.

[29]  V. Dehant,et al.  Influence of triaxiality and second-order terms in flattenings on the rotation of terrestrial planets , 2002 .

[30]  A. Rivoldini,et al.  A Geophysical Perspective on the Bulk Composition of Mars , 2017 .

[31]  E. Standish,et al.  Martian precession and rotation from Viking lander range data , 1997 .

[32]  V. Dehant,et al.  Study of the Total Electron Content in Mars ionosphere from MARSIS data set , 2016 .

[33]  K. Gwinner,et al.  Selection of the InSight Landing Site , 2017 .

[34]  V. Dehant,et al.  Computation of Mars' transfer functions for nutations, tides and surface loading , 2000 .

[35]  K. W. Yip,et al.  Measurements of large-scale density fluctuations in the solar wind using dual-frequency phase scintillations , 1976 .

[36]  Mark W. Powell,et al.  Localization and 'Contextualization' of Curiosity in Gale Crater, and Other Landed Mars Missions , 2013 .

[37]  W. Folkner,et al.  The netlander ionosphere and geodesy experiment , 2001 .

[38]  F. Hourdin,et al.  Influence of the seasonal winds and the CO2 mass exchange between atmosphere and polar caps on Mars' rotation , 2002 .

[39]  V. Dehant,et al.  Mars nutation resonance due to Free Inner Core Nutation , 2003 .

[40]  T. Spohn,et al.  How large are present‐day heat flux variations across the surface of Mars? , 2016 .

[41]  D. Breuer,et al.  The Heat Flow and Physical Properties Package (HP3) for the InSight Mission , 2018, Space Science Reviews.

[42]  Alexander Y. Rozhko,et al.  Role of seepage forces on seismicity triggering , 2010 .

[43]  Maria T. Zuber,et al.  Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios , 2004 .

[44]  Frank G. Lemoine,et al.  Seasonal and static Gravity Field of Mars from MGS, Mars Odyssey and MRO Radio Science , 2016 .

[45]  Jeroen Tromp,et al.  Planned Products of the Mars Structure Service for the InSight Mission to Mars , 2017 .

[46]  R. Kirk,et al.  Analysis of Local Slopes at the InSight Landing Site on Mars , 2017 .

[47]  V. Dehant,et al.  Sensitivity of the Free Core Nutation and the Chandler Wobble to changes in the interior structure of Mars , 2000 .

[48]  H. J. Moore,et al.  Overview of the Mars Pathfinder mission and assessment of landing site predictions. , 1997, Science.

[49]  P. M. Mathews,et al.  Forced nutations of the Earth: Influence of inner core dynamics: 2. Numerical results and comparisons , 1991 .

[50]  John W. Morgan,et al.  Chemical composition of Mars , 1979 .

[51]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[52]  D. Tholen,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2009 , 2011 .

[53]  S. Smrekar,et al.  Potential Effects of Surface Temperature Variations and Disturbances and Thermal Convection on the Mars InSight HP3 Heat-Flow Determination , 2017 .

[54]  V. Dehant,et al.  The effects of seasonal mass redistribution and interior structure on Length-of-Day variations of Mars , 2006 .

[55]  Carol R. Stoker,et al.  Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results , 1999 .

[56]  V. Dehant,et al.  Signatures of the Martian rotation parameters in the Doppler and range observables , 2016, 1611.09040.

[57]  Dah-Ning Yuan,et al.  A global solution for the Mars static and seasonal gravity, Mars orientation, Phobos and Deimos masses, and Mars ephemeris , 2006 .

[58]  V. Dehant,et al.  Tidally induced surface displacements, external potential variations, and gravity variations on Mars , 2003 .

[59]  P. M. Mathews,et al.  Precession, Nutation and Wobble of the Earth , 2015 .

[60]  S. Murty,et al.  Precursors of Mars: Constraints from nitrogen and oxygen isotopic compositions of martian meteorites , 2003 .

[61]  Thomas A. Herring,et al.  Forced nutations of the Earth: Influence of inner core dynamics: 1. Theory , 1991 .

[62]  S. Chapman,et al.  The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth , 1931 .

[63]  L. Sebastien InSight coordinates determination from direct-to-Earth radio-tracking and Mars topography model , 2016 .

[64]  A. Trebi-Ollennu,et al.  Geology and Physical Properties Investigations by the InSight Lander , 2018, Space Science Reviews.

[65]  A. Cazenave,et al.  Meteorological effects on the seasonal variations of the rotation of Mars , 1981 .

[66]  V. Dehant,et al.  Comparison Between the Nutations of the Planet Mars and the Nutations of the Earth , 2000 .

[67]  M. Zuber,et al.  Mars high resolution gravity fields from MRO, Mars seasonal gravity, and other dynamical parameters , 2011 .

[68]  A. Conrad,et al.  Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015 , 2018 .

[69]  F. Hourdin,et al.  Mars rotation variations induced by atmosphere and ice caps , 2000 .

[70]  K Davis,et al.  Localization and Physical Property Experiments Conducted by Opportunity at Meridiani Planum , 2004, Science.