Combined molecular and supramolecular bottom-up nanoengineering for enhanced nonlinear optical response: experiments, modeling, and approaching the fundamental limit.

The authors study the combination of two independent strategies that enhance the hyperpolarizability of ionic organic chromophores. The first molecular-level strategy is the extension of the conjugation path in the active chromophore. The second supramolecular-level strategy is the bottom-up nanoengineering of an inclusion complex of the chromophore in an amylose helix by self-assembly. The authors study a series of five (dimethylamino)stilbazolium-type chromophores with increasing conjugation length between the (dimethylamino)phenyl donor ring and the pyridinium acceptor ring in conjunction with four amylose helices of differing molecular weights. The first hyperpolarizabilities of the self-assembled inclusion complexes, as determined with frequency-resolved femtosecond hyper-Rayleigh scattering at 800 and 1300 nm, are compared with experimental values for the free chromophores in solution and with theoretical values. While the experimental values for the hyperpolarizability in solution are lower than the theoretically predicted values, an enhancement upon inclusion is observed, with the longest chromophore in the best amylose helix showing an enhancement by one order of magnitude. Molecular modeling of the inclusion of the chromophore suggests that the coplanarity of the two rings is more important than all-trans configuration in the conjugation path. The fundamental limit analysis indicates that the inclusion inside the amylose helix results in an optimal excited-level energy spacing that is responsible for breaching the apparent limit.

[1]  Mark G. Kuzyk,et al.  Quantum limits of the hyper-Rayleigh scattering susceptibility , 2001 .

[2]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .

[3]  Oh-Kil Kim,et al.  Supramolecular inclusion complexation of amylose with photoreactive dyes , 1994 .

[4]  Koen Clays,et al.  Enhancement of the molecular hyperpolarizability by a supramolecular amylose–dye inclusion complex, studied by hyper-Rayleigh scattering with fluorescence suppression , 1998 .

[5]  Z. Kotler,et al.  Measurement and analysis of molecular hyperpolarizability in the two-photon resonance regime , 2000 .

[6]  David J. Williams,et al.  Nonlinear optical properties of organic and polymeric materials , 1983 .

[7]  J. Perry,et al.  Synthesis of organic salts with large second-order optical nonlinearities. , 1994, Science.

[8]  Benoît Champagne,et al.  Large Off-Diagonal Contribution to the Second-Order Optical Nonlinearities of Λ-Shaped Molecules , 2003 .

[9]  Seth R. Marder,et al.  Experimental investigations of organic molecular nonlinear optical polarizabilities. 2. A study of conjugation dependences , 1991 .

[10]  Benjamin J. Coe,et al.  Molecular Materials Possessing Switchable Quadratic Nonlinear Optical Properties , 1999 .

[11]  Joseph Zyss,et al.  Nonlinear optics in multipolar media: theory and experiments , 1994 .

[12]  M. Kuzyk,et al.  Fundamental limits on third-order molecular susceptibilities. , 2000, Optics letters.

[13]  Mark G Kuzyk,et al.  The effects of geometry on the hyperpolarizability. , 2006, The Journal of chemical physics.

[14]  Akira Watanabe,et al.  Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes , 2000 .

[15]  Zhang,et al.  Low (Sub-1-volt) halfwave voltage polymeric electro-optic modulators achieved by controlling chromophore shape , 2000, Science.

[16]  C. H. Wang,et al.  Dispersion of the first molecular hyperpolarizability of charge-transfer chromophores studied by hyper-Rayleigh scattering , 2001 .

[17]  Akira Watanabe,et al.  HYPER-RAYLEIGH SCATTERING STUDIES OF AN IONIC SPECIES : SOLVENT EFFECT ON HYPERPOLARIZABILITY OF 1-ANILINONAPHTHALENE-8-SULFONIC ACID AMMONIUM SALT , 1997 .

[18]  Koen Clays,et al.  High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering , 1998 .

[19]  Seth R. Marder,et al.  Synthesis of Organic Salts with Large Second-Order Optical Nonlinearities , 1989, Science.

[20]  C. C. Teng,et al.  Dispersion of the Nonlinear Second-Order Optical Susceptibility of an Organic System: p-Nitroaniline , 1983 .

[21]  K. McCallion,et al.  Waveguide fabrication and high-speed in-line intensity modulation in 4- N,N-4'-dimethylamino-4'-N'-methyl-stilbazolium tosylate , 1999 .

[22]  Peter Günter,et al.  Parametric-Interactions in the Organic Salt 4-N,N-dimethylamino-4'-N'-methyl-stilbazolium Tosylate at Telecommunication Wavelengths , 1998, CLEO/Europe Conference on Lasers and Electro-Optics.

[23]  C. H. Wang,et al.  Effects of dephasing and vibronic structure on the first hyperpolarizability of strongly charge-transfer molecules , 2000 .

[24]  Z. Kotler,et al.  Resonantly enhanced real hyperpolarizability. , 2001, Optics letters.

[25]  Simon J. Coles,et al.  Quadratic Optical Nonlinearities of N‐Methyl and N‐Aryl Pyridinium Salts , 2003 .

[26]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[27]  Koen Clays,et al.  INVESTIGATIONS OF THE HYPERPOLARIZABILITY IN ORGANIC MOLECULES FROM DIPOLAR TO OCTOPOLAR SYSTEMS , 1994 .

[28]  Peter Günter,et al.  Electro‐optic properties of the organic salt 4‐N,N‐dimethylamino‐4′‐N′‐methyl‐stilbazolium tosylate , 1996 .

[29]  Persoons,et al.  Hyper-Rayleigh scattering in solution. , 1991, Physical review letters.

[30]  Simon J. Coles,et al.  Quadratic Nonlinear Optical Properties of N-Aryl Stilbazolium Dyes** , 2002 .

[31]  Larry R. Dalton,et al.  Realization of sub 1 V polymeric EO modulators through systematic definition of material structure/function relationships , 2001 .

[32]  Seth R. Marder,et al.  Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives , 1991 .

[33]  K. Clays,et al.  Determination of the hyperpolarizability of an octopolar molecular ion by hyper-Rayleigh scattering. , 1993, Optics letters.

[34]  Inge Asselberghs,et al.  Highly unusual effects of pi-conjugation extension on the molecular linear and quadratic nonlinear optical properties of ruthenium(II) ammine complexes. , 2003, Journal of the American Chemical Society.

[35]  Lifeng Chi,et al.  Non-linear optical properties of hemicyanine monolayers and the protonation effect , 1988 .

[36]  M. Froimowitz,et al.  HyperChem: a software package for computational chemistry and molecular modeling. , 1993, BioTechniques.

[37]  Yanhua Shih,et al.  Second-Harmonic Generation by Spontaneous Self-Poling of Supramolecular Thin Films of an Amylose−Dye Inclusion Complex , 1996 .

[38]  Antao Chen,et al.  The molecular and supramolecular engineering of polymeric electro-optic materials , 1999 .

[39]  Kuzyk Physical limits on electronic nonlinear molecular susceptibilities , 2000, Physical review letters.

[40]  Mark G. Kuzyk,et al.  Nonlinear Optics: Fundamental Limits ofNonlinear Susceptibilities , 2003 .

[41]  Koen Clays,et al.  Why hyperpolarizabilities fall short of the fundamental quantum limits. , 2004, The Journal of chemical physics.

[42]  Kenneth D. Singer,et al.  Second-order nonlinear-optical properties of donor- and acceptor-substituted aromatic compounds , 1989 .

[43]  A. F. Garito,et al.  Dispersion of the nonlinear second-order optical susceptibility of organic systems (A) , 1983 .

[44]  Mark G. Kuzyk,et al.  Erratum: Physical Limits on Electronic Nonlinear Molecular Susceptibilities [Phys. Rev. Lett. 85, 001218 (2000)] , 2003 .

[45]  Ude Scheunemann,et al.  Second-harmonic generation in Langmuir–Blodgett monolayers of stilbazium salt and phenylhydrazone dyes , 1988 .

[46]  Yanhua Shih,et al.  A novel supramolecular self-assembly thin film with spontaneous polar order , 1998 .

[47]  Johann Gasteiger,et al.  A new model for calculating atomic charges in molecules , 1978 .

[48]  C. Reichardt Solvents and Solvent Effects in Organic Chemistry , 1988 .

[49]  K Clays Theoretical upper limits and experimental overestimates for molecular hyperpolarizabilities: a symbiosis. , 2001, Optics letters.

[50]  Mark G. Kuzyk,et al.  Erratum: “Why hyperpolarizabilities fall short of the fundamental quantum limit” [J. Chem. Phys.121, 7932 (2004)] , 2006 .

[51]  C. H. Wang,et al.  HYPER-RAYLEIGH SCATTERING USING 1907 NM LASER EXCITATION , 1999 .

[52]  Koen Clays,et al.  Hyper‐Rayleigh scattering in solution with tunable femtosecond continuous‐wave laser source , 1994 .

[53]  Mark G. Kuzyk,et al.  Fundamental limits on third-order molecular susceptibilities: erratum , 2003 .

[54]  A. Ulman,et al.  Absorption and second-harmonic generation of monomer and aggregate hemicyanine dye in Langmuir-Blodgett films. , 1988, Optics letters.

[55]  Edward H. Sargent,et al.  Cross-linked C60 Polymer Breaches the Quantum Gap , 2004 .

[56]  R. W. Terhune,et al.  Measurements of Nonlinear Light Scattering , 1965 .

[57]  Mark G. Kuzyk Compact sum-over-states expression without dipolar terms for calculating nonlinear susceptibilities , 2005 .

[58]  Mark G. Kuzyk,et al.  Second-order nonlinear-optical processes in orientationally ordered materials: relationship between molecular and macroscopic properties , 1987 .

[59]  M. G. Kuzyk,et al.  Connecting at the speed of light , 2003 .

[60]  Benjamin J. Coe,et al.  Design strategies versus limiting theory for engineering large second-order nonlinear optical polarizabilities in charged organic molecules , 2003 .

[61]  A. Sa’ar,et al.  Electric field induced second harmonic generation with and without fringes , 2000 .

[62]  O.F.J. Noordman,et al.  Time-resolved hyper-Rayleigh scattering: measuring first hyperpolarizabilities β of fluorescent molecules , 1996 .

[63]  G. G. Roberts,et al.  Second-harmonic generation in mixed hemicyanine: fatty-acid Langmuir–Blodgett monolayers , 1987 .

[64]  David J. Williams,et al.  Introduction to Nonlinear Optical Effects in Molecules and Polymers , 1991 .

[65]  David J. Williams,et al.  Organic Polymeric and Non-Polymeric Materials with Large Optical Nonlinearities , 1984 .

[66]  Kenneth D. Singer,et al.  Measurements of molecular second order optical susceptibilities using dc induced second harmonic generation , 1981 .