Inhibition of microRNA-155 ameliorates experimental autoimmune myocarditis by modulating Th17/Treg immune response

[1]  Bill Bynum,et al.  Lancet , 2015, The Lancet.

[2]  S. Mowla,et al.  miRNA therapeutics in cardiovascular diseases: promises and problems , 2015, Front. Genet..

[3]  Robert Root-Bernstein,et al.  Unresolved issues in theories of autoimmune disease using myocarditis as a framework. , 2015, Journal of theoretical biology.

[4]  Zhaojian Liu,et al.  miR-155 Deficiency Ameliorates Autoimmune Inflammation of Systemic Lupus Erythematosus by Targeting S1pr1 in Faslpr/lpr Mice , 2015, The Journal of Immunology.

[5]  H. Katus,et al.  Mouse models of autoimmune diseases - autoimmune myocarditis. , 2015, Current pharmaceutical design.

[6]  Ningli Li,et al.  Regulatory T cells in rheumatoid arthritis showed increased plasticity toward Th17 but retained suppressive function in peripheral blood , 2014, Annals of the rheumatic diseases.

[7]  S. Crowe,et al.  Monocytes as Regulators of Inflammation and HIV-Related Comorbidities during cART , 2014, Journal of immunology research.

[8]  Y. Lévy,et al.  Role of miR‐155 in the regulation of lymphocyte immune function and disease , 2014, Immunology.

[9]  W. Langridge,et al.  The Role of Dendritic Cells in Tissue-Specific Autoimmunity , 2014, Journal of immunology research.

[10]  Min Guo,et al.  MicroRNA-155 Is Involved in the Pathogenesis of Ulcerative Colitis by Targeting FOXO3a , 2014, Inflammatory bowel diseases.

[11]  B. Reizis,et al.  The role of dendritic cells in autoimmunity , 2013, Nature Reviews Immunology.

[12]  D. Hilton,et al.  Suppression of cytokine signaling: the SOCS perspective. , 2013, Cytokine & growth factor reviews.

[13]  Youcun Qian,et al.  MicroRNA in immunity and autoimmunity , 2013, Journal of Molecular Medicine.

[14]  E. Vigorito,et al.  miR‐155: an ancient regulator of the immune system , 2013, Immunological reviews.

[15]  D. Čiháková,et al.  Control of inflammatory heart disease by CD4+ T cells , 2013, Annals of the New York Academy of Sciences.

[16]  Miriam Merad,et al.  The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. , 2013, Annual review of immunology.

[17]  S. Iliceto,et al.  Immune-mediated and autoimmune myocarditis: clinical presentation, diagnosis and management , 2013, Heart Failure Reviews.

[18]  Huanhuan Li,et al.  MicroRNA-155 Modulates Treg and Th17 Cells Differentiation and Th17 Cell Function by Targeting SOCS1 , 2012, PloS one.

[19]  S. Kaveri,et al.  Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. , 2012, The American journal of pathology.

[20]  A. Rudensky,et al.  Regulatory T cells: mechanisms of differentiation and function. , 2012, Annual review of immunology.

[21]  M. Levings,et al.  Suppression assays with human T regulatory cells: A technical guide , 2012, European journal of immunology.

[22]  I. Komuro,et al.  IL-6-mediated Th17 differentiation through RORγt is essential for the initiation of experimental autoimmune myocarditis. , 2011, Cardiovascular research.

[23]  W. B. van den Berg,et al.  Essential role of microRNA-155 in the pathogenesis of autoimmune arthritis in mice. , 2011, Arthritis and rheumatism.

[24]  K. Nakayama,et al.  miR-221 and miR-155 regulate human dendritic cell development, apoptosis, and IL-12 production through targeting of p27kip1, KPC1, and SOCS-1. , 2011, Blood.

[25]  Eunjung Jang,et al.  Transcription factor T-bet represses TH17 differentiation by preventing Runx1-mediated activation of the RORγt gene , 2010, Nature Immunology.

[26]  Xiang Cheng,et al.  Th17 Cells Contribute to Viral Replication in Coxsackievirus B3-Induced Acute Viral Myocarditis , 2010, The Journal of Immunology.

[27]  M. Fukuoka,et al.  Regulatory T Cells Protect Mice Against Coxsackievirus-Induced Myocarditis Through the Transforming Growth Factor &bgr;–Coxsackie-Adenovirus Receptor Pathway , 2010, Circulation.

[28]  B. Wei,et al.  microRNAs: critical regulators in Th17 cells and players in diseases , 2010, Cellular and Molecular Immunology.

[29]  Dan R. Littman,et al.  Th17 and Regulatory T Cells in Mediating and Restraining Inflammation , 2010, Cell.

[30]  Ryan M. O’Connell,et al.  Physiological and pathological roles for microRNAs in the immune system , 2010, Nature Reviews Immunology.

[31]  S. Hammond,et al.  Micro‐RNA‐155 inhibits IFN‐γ signaling in CD4+ T cells , 2009, European journal of immunology.

[32]  D. Mennerich,et al.  miR-155 Inhibition Sensitizes CD4+ Th Cells for TREG Mediated Suppression , 2009, PloS one.

[33]  Ming Li,et al.  Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. , 2009, Arthritis and rheumatism.

[34]  Ryan M. O’Connell,et al.  Inositol phosphatase SHIP1 is a primary target of miR-155 , 2009, Proceedings of the National Academy of Sciences.

[35]  R. Martinez-Nunez,et al.  MicroRNA-155 Modulates the Pathogen Binding Ability of Dendritic Cells (DCs) by Down-regulation of DC-specific Intercellular Adhesion Molecule-3 Grabbing Non-integrin (DC-SIGN)* , 2009, The Journal of Biological Chemistry.

[36]  E. Vigorito,et al.  Cutting Edge: The Foxp3 Target miR-155 Contributes to the Development of Regulatory T Cells1 , 2009, The Journal of Immunology.

[37]  R. Dana,et al.  Autoimmunity in Dry Eye Is Due to Resistance of Th17 to Treg Suppression1 , 2009, The Journal of Immunology.

[38]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[39]  Hana Lee,et al.  Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. , 2009, Immunity.

[40]  L. Boon,et al.  Enforced expression of GATA3 allows differentiation of IL‐17‐producing cells, but constrains Th17‐mediated pathology , 2008, European journal of immunology.

[41]  Michel C Nussenzweig,et al.  MicroRNA-155 suppresses activation-induced cytidine deaminase-mediated Myc-Igh translocation. , 2008, Immunity.

[42]  Aadel A. Chaudhuri,et al.  Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder , 2008, The Journal of experimental medicine.

[43]  E. d'Hennezel,et al.  Functional Waning of Naturally Occurring CD4+ Regulatory T-Cells Contributes to the Onset of Autoimmune Diabetes , 2008, Diabetes.

[44]  E. Bettelli,et al.  The dynamics of effector T cells and Foxp3+ regulatory T cells in the promotion and regulation of autoimmune encephalomyelitis , 2007, Journal of Neuroimmunology.

[45]  Anton J. Enright,et al.  Requirement of bic/microRNA-155 for Normal Immune Function , 2007, Science.

[46]  V. Kuchroo,et al.  Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation , 2007, Nature Medicine.

[47]  A. Feldman,et al.  Coxsackievirus B3 Induces T Regulatory Cells, Which Inhibit Cardiomyopathy in Tumor Necrosis Factor-α Transgenic Mice , 2006, Circulation research.

[48]  H. Weiner,et al.  Reciprocal developmental pathways for the generation of pathogenic effector TH17 and regulatory T cells , 2006, Nature.

[49]  N. Rajewsky,et al.  Silencing of microRNAs in vivo with ‘antagomirs’ , 2005, Nature.

[50]  S. Huber,et al.  Roles of Tumor Necrosis Factor Alpha (TNF-α) and the p55 TNF Receptor in CD1d Induction and Coxsackievirus B3-Induced Myocarditis , 2005, Journal of Virology.

[51]  Rajni B. Sharma,et al.  Animal models for autoimmune myocarditis and autoimmune thyroiditis. , 2004, Methods in molecular medicine.

[52]  Lukas Hunziker,et al.  Dendritic cell–induced autoimmune heart failure requires cooperation between adaptive and innate immunity , 2003, Nature Medicine.

[53]  Thomas D. Schmittgen,et al.  Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. , 2001, Methods.

[54]  G. Schuler,et al.  An advanced culture method for generating large quantities of highly pure dendritic cells from mouse bone marrow. , 1999, Journal of immunological methods.