Watching the release of a photopharmacological drug from tubulin using time-resolved serial crystallography

[1]  E. Sprinz,et al.  Oral Sabizabulin for High-Risk, Hospitalized Adults with Covid-19: Interim Analysis. , 2022, NEJM evidence.

[2]  Z. Pianowski,et al.  Photopharmacology of Antimitotic Agents , 2022, International journal of molecular sciences.

[3]  S. Baytas Recent Advances in Combretastatin A-4 Inspired Inhibitors of Tubulin Polymerization-An Update. , 2022, Current medicinal chemistry.

[4]  M. Steinmetz,et al.  Crystallization Systems for the High-Resolution Structural Analysis of Tubulin-Ligand Complexes. , 2022, Methods in molecular biology.

[5]  R. Hoogenboom,et al.  Advances and opportunities in the exciting world of azobenzenes , 2021, Nature Reviews Chemistry.

[6]  M. Steinmetz,et al.  Inhibiting parasite proliferation using a rationally designed anti‐tubulin agent , 2021, EMBO molecular medicine.

[7]  Diana C. F. Monteiro,et al.  Using photocaging for fast time-resolved structural biology studies , 2021, Acta crystallographica. Section D, Structural biology.

[8]  Mitchell D. Miller,et al.  Observation of substrate diffusion and ligand binding in enzyme crystals using high-repetition-rate mix-and-inject serial crystallography , 2021, IUCrJ.

[9]  R. Neutze,et al.  Advances and challenges in time-resolved macromolecular crystallography , 2021, Science.

[10]  S. Reiche,et al.  Pink-beam serial femtosecond crystallography for accurate structure-factor determination at an X-ray free-electron laser , 2021, IUCrJ.

[11]  Selina L. S. Storm,et al.  An on-demand, drop-on-drop method for studying enzyme catalysis by serial crystallography , 2021, Nature Communications.

[12]  I. Schlichting,et al.  Discerning best practices in XFEL-based biological crystallography – standards for nonstandard experiments , 2021, IUCrJ.

[13]  P. Hamm,et al.  Using azobenzene photocontrol to set proteins in motion , 2021, Nature Reviews Chemistry.

[14]  A. Cavalli,et al.  Comprehensive Analysis of Binding Sites in Tubulin , 2021, Angewandte Chemie.

[15]  M. Steinmetz,et al.  In Vivo Photocontrol of Microtubule Dynamics and Integrity, Migration and Mitosis, by the Potent GFP-Imaging-Compatible Photoswitchable Reagents SBTubA4P and SBTub2M , 2021, bioRxiv.

[16]  M. Steinmetz,et al.  A Robust, GFP-Orthogonal Photoswitchable Inhibitor Scaffold Extends Optical Control over the Microtubule Cytoskeleton. , 2020, Cell chemical biology.

[17]  A. Orville Recent results in time resolved serial femtosecond crystallography at XFELs. , 2020, Current opinion in structural biology.

[18]  A. Cavalli,et al.  Thermodynamics and Kinetics of Drug-Target Binding by Molecular Simulation , 2020, Chemical reviews.

[19]  D. Trauner,et al.  Photoswitchable paclitaxel-based microtubule stabilisers allow optical control over the microtubule cytoskeleton , 2020, Nature Communications.

[20]  Marcel Knossow,et al.  The Mechanism of Tubulin Assembly into Microtubules: Insights from Structural Studies , 2020, iScience.

[21]  K. Nass,et al.  Femtosecond-to-millisecond structural changes in a light-driven sodium pump , 2020, Nature.

[22]  R. Neutze,et al.  A tool for visualizing protein motions in time-resolved crystallography , 2020, Structural dynamics.

[23]  Marius Schmidt Reaction Initiation in Enzyme Crystals by Diffusion of Substrate , 2020, Crystals.

[24]  Anton Barty,et al.  Time-Resolved Serial Femtosecond Crystallography at the European XFEL , 2019, Nature Methods.

[25]  H. Chapman,et al.  Time-Resolved Serial Femtosecond Crystallography at the European XFEL , 2019, Nature Methods.

[26]  F. Viti,et al.  Structure, Thermodynamics, and Kinetics of Plinabulin Binding to two Tubulin Isotypes , 2019, Chem.

[27]  Avner Schlessinger,et al.  PyVOL: a PyMOL plugin for visualization, comparison, and volume calculation of drug-binding sites , 2019, bioRxiv.

[28]  Friedjof Tellkamp,et al.  Time-resolved crystallography reveals allosteric communication aligned with molecular breathing , 2019, Science.

[29]  Anton Barty,et al.  XGANDALF – extended gradient descent algorithm for lattice finding , 2019, Acta crystallographica. Section A, Foundations and advances.

[30]  J. A. Frank,et al.  Designing azobenzene-based tools for controlling neurotransmission. , 2019, Current opinion in structural biology.

[31]  A. Llebaria,et al.  GPCR photopharmacology , 2019, Molecular and Cellular Endocrinology.

[32]  P. Nogly,et al.  Proton uptake mechanism in bacteriorhodopsin captured by serial synchrotron crystallography , 2019, Science.

[33]  E. Nango,et al.  Improving High Viscosity Extrusion of Microcrystals for Time-resolved Serial Femtosecond Crystallography at X-ray Lasers. , 2019, Journal of visualized experiments : JoVE.

[34]  A. Barty,et al.  Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser , 2018, Science.

[35]  Dirk Trauner,et al.  In Vivo Photopharmacology. , 2018, Chemical reviews.

[36]  M. Steinmetz,et al.  Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. , 2018, Trends in cell biology.

[37]  L. Rice,et al.  Microtubule dynamics: an interplay of biochemistry and mechanics , 2018, Nature Reviews Molecular Cell Biology.

[38]  B. Ky,et al.  Clinical trial experience with CA4P anticancer therapy: focus on efficacy, cardiovascular adverse events, and hypertension management , 2018, Gynecologic Oncology Research and Practice.

[39]  Samir Guglani Death , 1890, The Lancet.

[40]  M. Chergui,et al.  Perspective: Opportunities for ultrafast science at SwissFEL , 2017, Structural dynamics.

[41]  M. Liang,et al.  Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons , 2017, Nature Communications.

[42]  M. Liang,et al.  Serial millisecond crystallography for routine room-temperature structure determination at synchrotrons , 2017, Nature Communications.

[43]  O. Nureki,et al.  Hydroxyethyl cellulose matrix applied to serial crystallography , 2017, Scientific Reports.

[44]  A. Cavalli,et al.  Structural Basis of cis- and trans-Combretastatin Binding to Tubulin , 2017 .

[45]  C. Slavov,et al.  The ultrafast reactions in the photochromic cycle of water-soluble fulgimide photoswitches. , 2016, Physical chemistry chemical physics : PCCP.

[46]  C. Simmerling,et al.  ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. , 2015, Journal of chemical theory and computation.

[47]  S. Zahler,et al.  Photoswitchable Inhibitors of Microtubule Dynamics Optically Control Mitosis and Cell Death , 2015, Cell.

[48]  Michael Schroeder,et al.  PLIP: fully automated protein–ligand interaction profiler , 2015, Nucleic Acids Res..

[49]  Garth J. Williams,et al.  Time-resolved serial crystallography captures high-resolution intermediates of photoactive yellow protein , 2014, Science.

[50]  L. Rice,et al.  The contribution of αβ-tubulin curvature to microtubule dynamics , 2014, The Journal of cell biology.

[51]  N. Dalbeth,et al.  Mechanism of action of colchicine in the treatment of gout. , 2014, Clinical therapeutics.

[52]  Franck Danel,et al.  The novel microtubule-destabilizing drug BAL27862 binds to the colchicine site of tubulin with distinct effects on microtubule organization. , 2014, Journal of molecular biology.

[53]  Anton Barty,et al.  Lipidic cubic phase injector facilitates membrane protein serial femtosecond crystallography , 2014, Nature Communications.

[54]  Wiktor Szymanski,et al.  Photopharmacology: beyond proof of principle. , 2014, Journal of the American Chemical Society.

[55]  Massimiliano Bonomi,et al.  PLUMED 2: New feathers for an old bird , 2013, Comput. Phys. Commun..

[56]  Duncan Poole,et al.  Routine Microsecond Molecular Dynamics Simulations with AMBER on GPUs. 2. Explicit Solvent Particle Mesh Ewald. , 2013, Journal of chemical theory and computation.

[57]  Elspeth F. Garman,et al.  RADDOSE-3D: time- and space-resolved modelling of dose in macromolecular crystallography , 2013 .

[58]  Woody Sherman,et al.  Protein and ligand preparation: parameters, protocols, and influence on virtual screening enrichments , 2013, Journal of Computer-Aided Molecular Design.

[59]  Keith Moffat,et al.  Time-resolved structural studies at synchrotrons and X-ray free electron lasers: opportunities and challenges. , 2012, Current opinion in structural biology.

[60]  Antonín Pavelka,et al.  CAVER 3.0: A Tool for the Analysis of Transport Pathways in Dynamic Protein Structures , 2012, PLoS Comput. Biol..

[61]  A. Plückthun,et al.  A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end , 2012, Proceedings of the National Academy of Sciences.

[62]  Anton Barty,et al.  CrystFEL: a software suite for snapshot serial crystallography , 2012 .

[63]  Lennart Nilsson,et al.  Magnesium Ion-Water Coordination and Exchange in Biomolecular Simulations. , 2012, Journal of chemical theory and computation.

[64]  G Andrew Woolley,et al.  Azobenzene photoswitches for biomolecules. , 2011, Chemical Society reviews.

[65]  Randy J. Read,et al.  Overview of the CCP4 suite and current developments , 2011, Acta crystallographica. Section D, Biological crystallography.

[66]  Raimond B G Ravelli,et al.  Variations in the colchicine-binding domain provide insight into the structural switch of tubulin , 2009, Proceedings of the National Academy of Sciences.

[67]  M. Parrinello,et al.  Well-tempered metadynamics: a smoothly converging and tunable free-energy method. , 2008, Physical review letters.

[68]  A. Alavi,et al.  Opportunities and Challenges , 1998, In Vitro Diagnostic Industry in China.

[69]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[70]  D. Alberts,et al.  Isolation and structure of the strong cell growth and tubulin inhibitor combretastatin A-4 , 1989, Experientia.

[71]  Y. Nishimura,et al.  AN INTERIM ANALYSIS , 2005 .

[72]  Kevin Cowtan,et al.  research papers Acta Crystallographica Section D Biological , 2005 .

[73]  Patrick A. Curmi,et al.  Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain , 2004, Nature.

[74]  Heather A. Carlson,et al.  Development of polyphosphate parameters for use with the AMBER force field , 2003, J. Comput. Chem..

[75]  Randy J Read,et al.  Electronic Reprint Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination Biological Crystallography Phenix: Building New Software for Automated Crystallographic Structure Determination , 2022 .

[76]  Z. Xiang,et al.  On the role of the crystal environment in determining protein side-chain conformations. , 2002, Journal of molecular biology.

[77]  K. Johnson An Update. , 1984, Journal of food protection.

[78]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .