Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data

[1]  D. Cowburn,et al.  The effect of noncollinearity of 15N-1H dipolar and 15N CSA tensors and rotational anisotropy on 15N relaxation, CSA/dipolar cross correlation, and TROSY , 1999, Journal of biomolecular NMR.

[2]  M. Blackledge,et al.  Solution structure, rotational diffusion anisotropy and local backbone dynamics of Rhodobacter capsulatus cytochrome c2. , 1998, Journal of molecular biology.

[3]  M. Blackledge,et al.  Precision and Uncertainty in the Characterization of Anisotropic Rotational Diffusion by 15N Relaxation , 1998 .

[4]  Cornelius T. Leondes,et al.  Fuzzy logic and expert systems applications , 1997, Neural network systems techniques and applications.

[5]  N. Yasuoka,et al.  High-resolution crystal structures of two polymorphs of cytochrome c' from the purple phototrophic bacterium rhodobacter capsulatus. , 1996, Journal of molecular biology.

[6]  P E Wright,et al.  Long-range motional restrictions in a multidomain zinc-finger protein from anisotropic tumbling. , 1995, Science.

[7]  T. Pawson,et al.  Backbone dynamics of a free and phosphopeptide-complexed Src homology 2 domain studied by 15N NMR relaxation. , 1994, Biochemistry.

[8]  Paul C. Driscoll,et al.  Deviations from the simple two-parameter model-free approach to the interpretation of nitrogen-15 nuclear magnetic relaxation of proteins , 1990 .

[9]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[10]  A. Szabó,et al.  Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity , 1982 .

[11]  D. Woessner,et al.  Nuclear Spin Relaxation in Ellipsoids Undergoing Rotational Brownian Motion , 1962 .

[12]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.