Weak boundary penalization for Dirichlet boundary control problems governed by elliptic equations

Abstract This paper concerns the finite element approximation of Dirichlet boundary control problems governed by elliptic equations. Different from the existing literatures, in which standard finite element method, mixed finite element method or Robin penalization method are used to deal with the underlying problems, we adopt an alternative penalization approach introduced by Nitsche called weak boundary penalization. Compared with the above methods, our discrete scheme not only keeps consistency and avoids penalization error, but also can be analyzed and computed conveniently as Neumann boundary control problems. Based on the weak boundary penalization method, we establish a finite element approximation to the Dirichlet boundary control problems and derive the a priori error estimates for the control, state and adjoint state. Numerical experiments are provided to confirm our theoretical results.

[1]  Stefan Ulbrich,et al.  Optimization with PDE Constraints , 2008, Mathematical modelling.

[2]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[3]  Martin Berggren,et al.  Approximations of Very Weak Solutions to Boundary-Value Problems , 2003, SIAM J. Numer. Anal..

[4]  Ridgway Scott,et al.  Finite element convergence for singular data , 1973 .

[5]  Richard S. Falk,et al.  Approximation of a class of optimal control problems with order of convergence estimates , 1973 .

[6]  Faker Ben Belgacem,et al.  Singular perturbation for the Dirichlet boundary control of elliptic problems , 2003 .

[7]  Eduardo Casas,et al.  Error estimates for the numerical approximation of Neumann control problems , 2008, Comput. Optim. Appl..

[8]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[9]  T. Geveci,et al.  On the approximation of the solution of an optimal control problem governed by an elliptic equation , 1979 .

[10]  Arnd Rösch,et al.  On the Regularity of the Solutions of Dirichlet Optimal Control Problems in Polygonal Domains , 2015, SIAM J. Control. Optim..

[11]  Eduardo Casas,et al.  Approximation of boundary control problems on curved domains , 2010, 2010 15th International Conference on Methods and Models in Automation and Robotics.

[12]  Wei Gong,et al.  Mixed Finite Element Method for Dirichlet Boundary Control Problem Governed by Elliptic PDEs , 2011, SIAM J. Control. Optim..

[13]  Roger Peyret Domain Decomposition Method , 2002 .

[14]  Andreas Günther,et al.  Hamburger Beiträge zur Angewandten Mathematik Finite element approximation of Dirichlet boundary control for elliptic PDEs on two-and three-dimensional curved domains , 2008 .

[15]  S. Agmon Lectures on Elliptic Boundary Value Problems , 1965 .

[16]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[17]  Jean-Pierre Raymond,et al.  Penalization of Dirichlet optimal control problems , 2009 .

[18]  Erik Burman,et al.  Weighted error estimates of the continuous interior penalty method for singularly perturbed problems , 2008 .

[19]  Sandra May,et al.  Error Analysis for a Finite Element Approximation of Elliptic Dirichlet Boundary Control Problems , 2013, SIAM J. Control. Optim..

[20]  Rolf Rannacher,et al.  Some Optimal Error Estimates for Piecewise Linear Finite Element Approximations , 1982 .

[21]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[22]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[23]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[24]  Erik Burman,et al.  Finite element methods with symmetric stabilization for the transient convection―diffusion-reaction equation , 2009 .

[25]  End Semester Me Finite element methods , 2018, Graduate Studies in Mathematics.

[26]  Jean-Pierre Raymond,et al.  ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .

[27]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .