Impurity induced layer disordering of Si implanted AlxGa1−xAs‐GaAs quantum‐well heterostructures: Layer disordering via diffusion from extrinsic dislocation loops

Extensive data are presented on impurity‐induced layer disordering (IILD) of AlxGa1−xAs‐GaAs quantum‐well heterostructures and superlattices that are Si implanted and annealed (Si+‐IILD) at three different implant doses. We show that impurity activation is not critical to the layer disordering process and that Si diffusion from the implanted profile initiates Si+‐IILD. When the implant dose is as high as φ≥5×1013/cm2 (nSi ≥2×1018/cm3), Si interstitial loops (Si‐ILs) form by diffusion and agglomeration of the implanted Si atoms during the initial stages of annealing. If a source of Ga vacancies is provided (e.g., via an As overpressure or SiO2 encapsulation), the Si‐ILs dissociate and supply Si atoms for diffusion and hence Si+‐IILD during the latter stages of annealing. If a Si3N4 encapsulant is employed, however, fewer Si‐ILs form and Si diffusion is inhibited. For an implantation dose as low as φ=1×1012/cm2 (nSi =3×1016/cm3), extensive Si+‐IILD is realized via capless annealing and Si‐ILs are not observ...

[1]  N. Holonyak,et al.  Highly efficient multiple emitter index guided array lasers fabricated by silicon impurity induced disordering , 1986 .

[2]  C. B. Carter,et al.  Defect structure and intermixing of ion-implanted AlxGa1−xAs/GaAs superlattices , 1986 .

[3]  N. Holonyak,et al.  Low‐threshold disorder‐defined buried‐heterostructure AlxGa1−xAs‐GaAs quantum well lasers , 1985 .

[4]  Yoshiro Hirayama,et al.  Ion-Species Dependence of Interdiffusion in Ion-Implanted GaAs-AlAs Superlattices , 1985 .

[5]  N. Holonyak,et al.  Si‐implanted and disordered stripe‐geometry AlxGa1−xAs‐GaAs quantum well lasers , 1985 .

[6]  W. M. Duncan,et al.  Self-compensation in rapid thermal annealed silicon-implanted gallium arsenide , 1985 .

[7]  H. Okamoto,et al.  Compositional Disordering of GaAs-AlxGa1-xAs Superlattice by Ga Focused Ion Beam Implantation and its Application to Submicron Structure Fabrication , 1985 .

[8]  N. Holonyak,et al.  Implantation disordering of AlxGa1−xAs superlattices , 1985 .

[9]  J. M. Whelan,et al.  A comparison of rapid thermal annealing and controlled atmosphere annealing of Si‐implanted GaAs , 1985 .

[10]  H. Okamoto,et al.  Interdiffusion of Al and Ga in Si-Implanted GaAs–AlAs Superlattices , 1984 .

[11]  M. Kuzuhara,et al.  SiOxNy capped annealing for Si‐implanted GaAs , 1984 .

[12]  N. Holonyak,et al.  Wavelength modification of AlxGa1−xAs quantum well heterostructure lasers by layer interdiffusion , 1983 .

[13]  James J. Coleman,et al.  Disorder of an AlAs‐GaAs superlattice by silicon implantation , 1982 .

[14]  T. Hirao,et al.  Study of Encapsulants for Annealing Si‐Implanted GaAs , 1982 .

[15]  W. Spitzer,et al.  Si-defect concentrations in heavily Si-DOPED GaAs: annealing-Induced changes-II , 1981 .

[16]  Karl Hess,et al.  Disorder of an AlAs‐GaAs superlattice by impurity diffusion , 1981 .

[17]  B. Streetman,et al.  Study of Encapsulants for Annealing GaAs , 1977 .

[18]  J. M. Whelan,et al.  Annealing of Ion‐Implanted GaAs in a Controlled Atmosphere , 1976 .

[19]  James F. Gibbons,et al.  Projected range statistics: Semiconductors and related materials , 1975 .

[20]  J E Pattison,et al.  International symposium on GaAs and related compounds , 1975 .

[21]  N. Holonyak,et al.  Window‐Heat Sink Sandwich for Optical Experiments: Diamond (or Sapphire)‐Semiconductor‐Indium Sandwich , 1971 .