The QCD transition temperature: Results with physical masses in the continuum limit

Abstract The transition temperature ( T c ) of QCD is determined by Symanzik improved gauge and stout-link improved staggered fermionic lattice simulations. We use physical masses both for the light quarks ( m u d ) and for the strange quark ( m s ). Four sets of lattice spacings ( N t = 4 , 6, 8 and 10) were used to carry out a continuum extrapolation. It turned out that only N t = 6 , 8 and 10 can be used for a controlled extrapolation, N t = 4 is out of the scaling region. Since the QCD transition is a non-singular cross-over there is no unique T c . Thus, different observables lead to different numerical T c values even in the continuum and thermodynamic limit. The peak of the renormalized chiral susceptibility predicts T c = 151 ( 3 ) ( 3 ) MeV , wheres T c -s based on the strange quark number susceptibility and Polyakov loops result in 24(4) MeV and 25(4) MeV larger values, respectively. Another consequence of the cross-over is the non-vanishing width of the peaks even in the thermodynamic limit, which we also determine. These numbers are attempted to be the full result for the T ≠ 0 transition, though other lattice fermion formulations (e.g. Wilson) are needed to cross-check them.

[1]  F. Karsch Equation of state and more from lattice regularized QCD , 2008, 0804.4148.

[2]  C. DeTar,et al.  Towards a precise determination of $T_c$ with 2+1 flavors of quarks , 2008 .

[3]  C. DeTar,et al.  Toward a precise determination of Tc with 2+1 flavors of quarks , 2007, 0710.1655.

[4]  C. Jung,et al.  QCD equation of state with almost physical quark masses , 2007, 0710.0354.

[5]  B. Berg,et al.  Deconfining phase transition on lattices with boundaries at low temperature , 2007, hep-lat/0701007.

[6]  Z. Fodor,et al.  Lattice QCD as a video game , 2006, Comput. Phys. Commun..

[7]  Z. Fodor,et al.  The order of the quantum chromodynamics transition predicted by the standard model of particle physics , 2006, Nature.

[8]  A. Kennedy,et al.  Accelerating dynamical-fermion computations using the rational hybrid Monte Carlo algorithm with multiple pseudofermion fields. , 2006, Physical review letters.

[9]  C. Jung,et al.  The transition temperature in QCD , 2006, hep-lat/0608013.

[10]  C. Bernard,et al.  Observations on staggered fermions at nonzero lattice spacing , 2006, hep-lat/0604017.

[11]  P. Forcrand,et al.  QCD at zero baryon density and the polyakov loop paradox , 2006, hep-lat/0602005.

[12]  S. Katz Equation of state from lattice QCD , 2005, hep-ph/0511166.

[13]  Z. Fodor,et al.  The equation of state in lattice QCD: with physical quark masses towards the continuum limit , 2005, hep-lat/0510084.

[14]  J. Shigemitsu,et al.  The Upsilon spectrum and m_b from full lattice QCD , 2005, hep-lat/0507013.

[15]  T. Takaishi,et al.  Testing and tuning symplectic integrators for the hybrid Monte Carlo algorithm in lattice QCD. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[16]  G. Colangelo,et al.  Finite volume effects for meson masses and decay constants , 2005, hep-lat/0503014.

[17]  D. Pleiter,et al.  A determination of the Lambda parameter from full lattice QCD , 2005, hep-ph/0502212.

[18]  C. DeTar,et al.  Light pseudoscalar decay constants, quark masses, and low energy constants from three-flavor lattice QCD , 2004, hep-lat/0407028.

[19]  C. DeTar,et al.  QCD thermodynamics with three flavors of improved staggered quarks , 2004, hep-lat/0405029.

[20]  H. Stuben,et al.  Finite temperature QCD with two flavors of nonperturbatively improved Wilson fermions , 2004, hep-lat/0401014.

[21]  C. Morningstar,et al.  Analytic smearing of SU(3) link variables in lattice QCD , 2003, hep-lat/0311018.

[22]  G. Papp,et al.  A scalable PC-based parallel computer for lattice QCD , 2002, hep-lat/0209115.

[23]  P. Petreczky,et al.  Heavy quark-antiquark free energy and the renormalized Polyakov loop , 2002, hep-lat/0207002.

[24]  C. DeTar,et al.  QCD spectrum with three quark flavors , 2001, hep-lat/0104002.

[25]  F. Knechtli,et al.  Flavor symmetry and the static potential with hypercubic blocking , 2001, hep-lat/0103029.

[26]  F. Karsch,et al.  Quark Mass and Flavour Dependence of the QCD Phase Transition , 2000, hep-lat/0012023.

[27]  M. Fukugita,et al.  Phase structure and critical temperature of two-flavor QCD with a renormalization group improved gauge action and clover improved Wilson quark action , 2000, hep-lat/0008011.

[28]  C. DeTar,et al.  QCD Thermodynamics with an Improved Lattice Action , 1997, hep-lat/9703003.

[29]  M. Fukugita,et al.  Operator dependence of hadron masses for Kogut-Susskind quarks on the lattice , 1994 .

[30]  Yang Mills,et al.  A new way to set the energy scale in lattice gauge theories and its application to the static force and σs in SU (2) Yang-Mills theory , 1993, hep-lat/9310022.

[31]  S. Naik On-shell improved action for QCD with susskind fermions and the asymptotic freedom scale , 1989 .

[32]  Massimo Bernaschi,et al.  Glueball masses and string tension in lattice QCD , 1987 .

[33]  P. Forcrand,et al.  Testing and tuning new symplectic integrators for Hybrid Monte Carlo algorithm in lattice QCD , 2008 .

[34]  J. Shigemitsu,et al.  Thespectrum and mb from full lattice QCD , 2008 .

[35]  Enrique Fernandez Martinez c ○ Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike Licence. , 2005 .

[36]  P. Petreczky,et al.  Heavy Quark Anti-Quark Free Energy and the , 2002 .