Ultrasonic Tissue Characterization for Prostate Diagnostics: Spectral Parameters vs. Texture Parameters. Sonohistologie für die Prostatadiagnostik: Vergleich von Spektral- und Texturparametern
暂无分享,去创建一个
H. Ermert | U. Scheipers | S. Philippou | H.-J. Sommerfeld | M. Garcia-Schürmann | K. Kühne | T. Senge | T. Senge | H. Ermert | H. Sommerfeld | S. Philippou | U. Scheipers | M. Garcia-Schürmann | K. Kühne | M. Garcia-Schurmann
[1] Transrectal Ultrasound of the Prostate: Innovations and Future Applications , 1998 .
[2] H. Rübben,et al. PSA – Früherkennung des Prostatakarzinoms , 2000, Der Urologe A.
[3] Julian Peto,et al. Cancer epidemiology in the last century and the next decade , 2001, Nature.
[4] Brian D. Ripley,et al. Pattern Recognition and Neural Networks , 1996 .
[5] Lotfi A. Zadeh,et al. Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..
[6] R. Tibshirani,et al. Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .
[7] L. A. Zedeh. Knowledge representation in fuzzy logic , 1989 .
[8] Robert M. Haralick,et al. Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..
[9] J. Thijssen,et al. Characterization of echographic image texture by cooccurrence matrix parameters. , 1997, Ultrasound in medicine & biology.
[10] Jyh-Shing Roger Jang,et al. ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..
[11] R G Aarnink,et al. Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. , 1994, Ultrasound in medicine & biology.
[12] R. F. Wagner,et al. Statistics of Speckle in Ultrasound B-Scans , 1983, IEEE Transactions on Sonics and Ultrasonics.
[13] T. Furuhashi,et al. Fusion of fuzzy/neuro/evolutionary computing for knowledge acquisition , 2001, Proc. IEEE.
[14] J. Thijssen. Ultrasonic tissue characterisation and echographic imaging. , 1989, Physics in medicine and biology.
[15] E. Feleppa,et al. Statistical framework for ultrasonic spectral parameter imaging. , 1997, Ultrasound in medicine & biology.
[16] E J Feleppa,et al. Spectrum-Analysis and Neural Networks for Imaging to Detect and Treat Prostate Cancer , 2001, Ultrasonic imaging.
[17] Ernest J. Feleppa,et al. Advanced ultrasonic tissue-typing and imaging based on radio-frequency spectrum analysis and neural-network classification for guidance of therapy and biopsy procedures , 2001, CARS.
[18] P. Scardino,et al. Early detection of prostate cancer. , 1989, The Urologic clinics of North America.
[19] U. Cobet,et al. System independent tissue typing of human testis and prostate , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).
[20] J. M. Thijssen. Ultrasonic Tissue Characterization , 1982 .
[21] E. Feleppa,et al. Statistics of ultrasonic spectral parameters for prostate and liver examinations , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[22] S. Delorme,et al. Ad multos annos , 2000 .
[23] H. Ermert,et al. Tissue-characterization of the prostate using radio frequency ultrasonic signals , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[24] M. Cloostermans,et al. A Beam Corrected Estimation of the Frequency Dependent Attenuation of Biological Tissues from Backscattered Ultrasound , 1983 .
[25] Ernest J. Feleppa,et al. Ultrasonic spectral-parameter imaging of the prostate , 1997, Int. J. Imaging Syst. Technol..
[26] Ernest J. Feleppa,et al. Ultrasonic spectral‐parameter imaging of the prostate , 1997 .
[27] J. Thijssen,et al. Correlations between acoustic and texture parameters from RF and B-mode liver echograms. , 1993, Ultrasound in medicine & biology.
[28] J. Mendel. Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.
[29] Tian Liu,et al. Role of advanced 2 and 3-dimensional ultrasound for detecting prostate cancer. , 2002, The Journal of urology.
[30] M. Stöckle,et al. Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound , 1999, The Prostate.
[31] Helmut Ermert,et al. Tissue characterization of the prostate using Kohonen-maps , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.
[32] Tian Liu,et al. Two-dimensional and three-dimensional tissue-type imaging of the prostate based on ultrasonic spectrum analysis and neural network classification , 2000, Medical Imaging.
[33] J M Thijssen,et al. Precision and accuracy of acoustospectrographic parameters. , 1996, Ultrasound in Medicine and Biology.
[34] K. Wear,et al. A Gaussian framework for modeling effects of frequency-dependent attenuation, frequency-dependent scattering, and gating , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[35] Sun-Yuan Kung,et al. Decision-based neural networks with signal/image classification applications , 1995, IEEE Trans. Neural Networks.
[36] N A Obuchowski,et al. Nonparametric analysis of clustered ROC curve data. , 1997, Biometrics.
[37] J.M. Thijssen,et al. Calibrated Parametric Medical Ultrasound Imaging , 2000, Ultrasonic imaging.
[38] T. Senge,et al. ULTRASCHALL-GEWEBECHARAKTERISIERUNG FÜR DIE PROSTATADIAGNOSTIK , 2009 .
[39] Theo M. de Reijke,et al. Transrectal Ultrasound in the Diagnosis of Prostate Cancer: State of the Art and Perspectives , 2001, European Urology.
[40] Helmut Ermert,et al. Ultrasonic multifeature tissue characterization for prostate diagnostics. , 2003, Ultrasound in medicine & biology.
[41] J. Thijssen. Ultrasonic tissue characterization and echographic imaging. , 1987, Medical progress through technology.
[42] O Basset,et al. Texture analysis of ultrasonic images of the prostate by means of co-occurrence matrices. , 1993, Ultrasonic imaging.
[43] V. Reuter,et al. Typing of prostate tissue by ultrasonic spectrum analysis , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.
[44] Berkman Sahiner,et al. Effects of sample size on classifier design: quadratic and neural network classifiers , 1997, Medical Imaging.
[45] William D O'Brien,et al. Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media. , 2002, The Journal of the Acoustical Society of America.
[46] Donald H. Foley. Considerations of sample and feature size , 1972, IEEE Trans. Inf. Theory.
[47] H Ermert,et al. In vivo study of online liver tissue classification based on envelope power spectrum analysis. , 1994, Ultrasonic imaging.
[48] Michael L. Oelze,et al. Erratum: “Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media” [J. Acoust. Soc. Am. 111, 2308–2319 (2002)] , 2003 .
[49] H. Ermert,et al. Comparison of different Neuro-Fuzzy classification systems for the detection of prostate cancer in ultrasonic images , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).
[50] W. Ellis,et al. The significance of isoechoic prostatic carcinoma. , 1994, The Journal of urology.
[51] J. Isaacs,et al. A history of prostate cancer treatment , 2002, Nature Reviews Cancer.
[52] U. Cobet,et al. Tissue characterization by imaging the local frequency dependent relative backscatter coefficient , 2000, Medical Imaging.
[53] Jacek M. Zurada,et al. Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images , 1996, IEEE Trans. Medical Imaging.
[54] Matthew A. Kupinski,et al. Objective Comparison of Quantitative Imaging Modalities Without the Use of a Gold Standard , 2001, IPMI.
[55] Helmut Ermert,et al. In vivo study of on-line liver tissue classification based on envelope power spectrum analysis , 1990, IEEE Symposium on Ultrasonics.
[56] H Rübben,et al. [PSA-based early detection of prostate cancer]. , 2000, Der Urologe. Ausg. A.
[57] Lotfi A. Zadeh,et al. Knowledge Representation in Fuzzy Logic , 1996, IEEE Trans. Knowl. Data Eng..
[58] Chuen-Tsai Sun,et al. Neuro-fuzzy modeling and control , 1995, Proc. IEEE.
[59] J M Thijssen,et al. Spectroscopy and image texture analysis. , 2000, Ultrasound in medicine & biology.