Ultrasonic Tissue Characterization for Prostate Diagnostics: Spectral Parameters vs. Texture Parameters. Sonohistologie für die Prostatadiagnostik: Vergleich von Spektral- und Texturparametern

An ultrasonic multi-feature tissue characterizing system for the detection of prostate cancer is presented. The system is based on the processing of radio frequency (RF) ultrasonic echo data. Data from 100 patients was acquired in a clinical study. Parameters are extracted from the RF echo data and classified using two adaptive network-based fuzzy inference systems (FIS) working in parallel as a nonlinear classifier. Next to spectral parameters, conventional texture parameters are calculated using demodulated and log-compressed echo data. In the first approach, the classifier is trained on both, spectral and texture parameters. In the second approach, the classifier is only trained on texture parameters. Classification results of both approaches are compared and it is demonstrated, that only the use of spectral parameters yields satisfying classification results. Results of a minimum distance classifier (MDC) are presented for comparison with the fuzzy inference system. For the final fuzzy inference systems used in this approach, the area under the ROC curve is between 84% and 86% for the combined approach and between 70% and 74% for the approach based on texture parameters only.

[1]  Transrectal Ultrasound of the Prostate: Innovations and Future Applications , 1998 .

[2]  H. Rübben,et al.  PSA – Früherkennung des Prostatakarzinoms , 2000, Der Urologe A.

[3]  Julian Peto,et al.  Cancer epidemiology in the last century and the next decade , 2001, Nature.

[4]  Brian D. Ripley,et al.  Pattern Recognition and Neural Networks , 1996 .

[5]  Lotfi A. Zadeh,et al.  Outline of a New Approach to the Analysis of Complex Systems and Decision Processes , 1973, IEEE Trans. Syst. Man Cybern..

[6]  R. Tibshirani,et al.  Improvements on Cross-Validation: The 632+ Bootstrap Method , 1997 .

[7]  L. A. Zedeh Knowledge representation in fuzzy logic , 1989 .

[8]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[9]  J. Thijssen,et al.  Characterization of echographic image texture by cooccurrence matrix parameters. , 1997, Ultrasound in medicine & biology.

[10]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[11]  R G Aarnink,et al.  Analysis of ultrasonographic prostate images for the detection of prostatic carcinoma: the automated urologic diagnostic expert system. , 1994, Ultrasound in medicine & biology.

[12]  R. F. Wagner,et al.  Statistics of Speckle in Ultrasound B-Scans , 1983, IEEE Transactions on Sonics and Ultrasonics.

[13]  T. Furuhashi,et al.  Fusion of fuzzy/neuro/evolutionary computing for knowledge acquisition , 2001, Proc. IEEE.

[14]  J. Thijssen Ultrasonic tissue characterisation and echographic imaging. , 1989, Physics in medicine and biology.

[15]  E. Feleppa,et al.  Statistical framework for ultrasonic spectral parameter imaging. , 1997, Ultrasound in medicine & biology.

[16]  E J Feleppa,et al.  Spectrum-Analysis and Neural Networks for Imaging to Detect and Treat Prostate Cancer , 2001, Ultrasonic imaging.

[17]  Ernest J. Feleppa,et al.  Advanced ultrasonic tissue-typing and imaging based on radio-frequency spectrum analysis and neural-network classification for guidance of therapy and biopsy procedures , 2001, CARS.

[18]  P. Scardino,et al.  Early detection of prostate cancer. , 1989, The Urologic clinics of North America.

[19]  U. Cobet,et al.  System independent tissue typing of human testis and prostate , 1999, 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No.99CH37027).

[20]  J. M. Thijssen Ultrasonic Tissue Characterization , 1982 .

[21]  E. Feleppa,et al.  Statistics of ultrasonic spectral parameters for prostate and liver examinations , 1997, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  S. Delorme,et al.  Ad multos annos , 2000 .

[23]  H. Ermert,et al.  Tissue-characterization of the prostate using radio frequency ultrasonic signals , 1999, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[24]  M. Cloostermans,et al.  A Beam Corrected Estimation of the Frequency Dependent Attenuation of Biological Tissues from Backscattered Ultrasound , 1983 .

[25]  Ernest J. Feleppa,et al.  Ultrasonic spectral-parameter imaging of the prostate , 1997, Int. J. Imaging Syst. Technol..

[26]  Ernest J. Feleppa,et al.  Ultrasonic spectral‐parameter imaging of the prostate , 1997 .

[27]  J. Thijssen,et al.  Correlations between acoustic and texture parameters from RF and B-mode liver echograms. , 1993, Ultrasound in medicine & biology.

[28]  J. Mendel Fuzzy logic systems for engineering: a tutorial , 1995, Proc. IEEE.

[29]  Tian Liu,et al.  Role of advanced 2 and 3-dimensional ultrasound for detecting prostate cancer. , 2002, The Journal of urology.

[30]  M. Stöckle,et al.  Artificial neural network analysis (ANNA) of prostatic transrectal ultrasound , 1999, The Prostate.

[31]  Helmut Ermert,et al.  Tissue characterization of the prostate using Kohonen-maps , 1994, 1994 Proceedings of IEEE Ultrasonics Symposium.

[32]  Tian Liu,et al.  Two-dimensional and three-dimensional tissue-type imaging of the prostate based on ultrasonic spectrum analysis and neural network classification , 2000, Medical Imaging.

[33]  J M Thijssen,et al.  Precision and accuracy of acoustospectrographic parameters. , 1996, Ultrasound in Medicine and Biology.

[34]  K. Wear,et al.  A Gaussian framework for modeling effects of frequency-dependent attenuation, frequency-dependent scattering, and gating , 2002, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[35]  Sun-Yuan Kung,et al.  Decision-based neural networks with signal/image classification applications , 1995, IEEE Trans. Neural Networks.

[36]  N A Obuchowski,et al.  Nonparametric analysis of clustered ROC curve data. , 1997, Biometrics.

[37]  J.M. Thijssen,et al.  Calibrated Parametric Medical Ultrasound Imaging , 2000, Ultrasonic imaging.

[38]  T. Senge,et al.  ULTRASCHALL-GEWEBECHARAKTERISIERUNG FÜR DIE PROSTATADIAGNOSTIK , 2009 .

[39]  Theo M. de Reijke,et al.  Transrectal Ultrasound in the Diagnosis of Prostate Cancer: State of the Art and Perspectives , 2001, European Urology.

[40]  Helmut Ermert,et al.  Ultrasonic multifeature tissue characterization for prostate diagnostics. , 2003, Ultrasound in medicine & biology.

[41]  J. Thijssen Ultrasonic tissue characterization and echographic imaging. , 1987, Medical progress through technology.

[42]  O Basset,et al.  Texture analysis of ultrasonic images of the prostate by means of co-occurrence matrices. , 1993, Ultrasonic imaging.

[43]  V. Reuter,et al.  Typing of prostate tissue by ultrasonic spectrum analysis , 1996, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[44]  Berkman Sahiner,et al.  Effects of sample size on classifier design: quadratic and neural network classifiers , 1997, Medical Imaging.

[45]  William D O'Brien,et al.  Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media. , 2002, The Journal of the Acoustical Society of America.

[46]  Donald H. Foley Considerations of sample and feature size , 1972, IEEE Trans. Inf. Theory.

[47]  H Ermert,et al.  In vivo study of online liver tissue classification based on envelope power spectrum analysis. , 1994, Ultrasonic imaging.

[48]  Michael L. Oelze,et al.  Erratum: “Frequency-dependent attenuation-compensation functions for ultrasonic signals backscattered from random media” [J. Acoust. Soc. Am. 111, 2308–2319 (2002)] , 2003 .

[49]  H. Ermert,et al.  Comparison of different Neuro-Fuzzy classification systems for the detection of prostate cancer in ultrasonic images , 1997, 1997 IEEE Ultrasonics Symposium Proceedings. An International Symposium (Cat. No.97CH36118).

[50]  W. Ellis,et al.  The significance of isoechoic prostatic carcinoma. , 1994, The Journal of urology.

[51]  J. Isaacs,et al.  A history of prostate cancer treatment , 2002, Nature Reviews Cancer.

[52]  U. Cobet,et al.  Tissue characterization by imaging the local frequency dependent relative backscatter coefficient , 2000, Medical Imaging.

[53]  Jacek M. Zurada,et al.  Classification algorithms for quantitative tissue characterization of diffuse liver disease from ultrasound images , 1996, IEEE Trans. Medical Imaging.

[54]  Matthew A. Kupinski,et al.  Objective Comparison of Quantitative Imaging Modalities Without the Use of a Gold Standard , 2001, IPMI.

[55]  Helmut Ermert,et al.  In vivo study of on-line liver tissue classification based on envelope power spectrum analysis , 1990, IEEE Symposium on Ultrasonics.

[56]  H Rübben,et al.  [PSA-based early detection of prostate cancer]. , 2000, Der Urologe. Ausg. A.

[57]  Lotfi A. Zadeh,et al.  Knowledge Representation in Fuzzy Logic , 1996, IEEE Trans. Knowl. Data Eng..

[58]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[59]  J M Thijssen,et al.  Spectroscopy and image texture analysis. , 2000, Ultrasound in medicine & biology.