Prognostic Significance of Diffuse Large B-Cell Lymphoma Cell of Origin Determined by Digital Gene Expression in Formalin-Fixed Paraffin-Embedded Tissue Biopsies.

PURPOSE To evaluate the prognostic impact of cell-of-origin (COO) subgroups, assigned using the recently described gene expression-based Lymph2Cx assay in comparison with International Prognostic Index (IPI) score and MYC/BCL2 coexpression status (dual expressers). PATIENTS AND METHODS Reproducibility of COO assignment using the Lymph2Cx assay was tested employing repeated sampling within tumor biopsies and changes in reagent lots. The assay was then applied to pretreatment formalin-fixed paraffin-embedded tissue (FFPET) biopsies from 344 patients with de novo diffuse large B-cell lymphoma (DLBCL) uniformly treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (R-CHOP) at the British Columbia Cancer Agency. MYC and BCL2 protein expression was assessed using immunohistochemistry on tissue microarrays. RESULTS The Lymph2Cx assay provided concordant COO calls in 96% of 49 repeatedly sampled tumor biopsies and in 100% of 83 FFPET biopsies tested across reagent lots. Critically, no frank misclassification (activated B-cell-like DLBCL to germinal center B-cell-like DLBCL or vice versa) was observed. Patients with activated B-cell-like DLBCL had significantly inferior outcomes compared with patients with germinal center B-cell-like DLBCL (log-rank P < .001 for time to progression, progression-free survival, disease-specific survival, and overall survival). In pairwise multivariable analyses, COO was associated with outcomes independent of IPI score and MYC/BCL2 immunohistochemistry. The prognostic significance of COO was particularly evident in patients with intermediate IPI scores and the non-MYC-positive/BCL2-positive subgroup (log-rank P < .001 for time to progression). CONCLUSION Assignment of DLBCL COO by the Lymph2Cx assay using FFPET biopsies identifies patient groups with significantly different outcomes after R-CHOP, independent of IPI score and MYC/BCL2 dual expression.

[1]  Emili Montserrat,et al.  A predictive model for aggressive non-Hodgkin's lymphoma. , 1993, The New England journal of medicine.

[2]  Ash A. Alizadeh,et al.  Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling , 2000, Nature.

[3]  Meland,et al.  The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. , 2002, The New England journal of medicine.

[4]  Adrian Wiestner,et al.  A gene expression-based method to diagnose clinically distinct subgroups of diffuse large B cell lymphoma , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[5]  L. Staudt,et al.  Confirmation of the molecular classification of diffuse large B-cell lymphoma by immunohistochemistry using a tissue microarray. , 2004, Blood.

[6]  L. Staudt,et al.  Stromal gene signatures in large-B-cell lymphomas. , 2008, The New England journal of medicine.

[7]  Jennifer L. Osborn,et al.  Direct multiplexed measurement of gene expression with color-coded probe pairs , 2008, Nature Biotechnology.

[8]  A Rosenwald,et al.  Retracted: Immunohistochemical prognostic markers in diffuse large B-cell lymphoma: validation of tissue microarray as a prerequisite for broad clinical applications (a study from the Lunenburg Lymphoma Biomarker Consortium) , 2007, Journal of Clinical Pathology.

[9]  Kai Fu,et al.  A New Immunostain Algorithm Classifies Diffuse Large B-Cell Lymphoma into Molecular Subtypes with High Accuracy , 2009, Clinical Cancer Research.

[10]  L. Staudt,et al.  Differential efficacy of bortezomib plus chemotherapy within molecular subtypes of diffuse large B-cell lymphoma. , 2009, Blood.

[11]  Kai Fu,et al.  Immunohistochemical methods for predicting cell of origin and survival in patients with diffuse large B-cell lymphoma treated with rituximab. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[12]  E. Giné,et al.  Gene-expression profiling and not immunophenotypic algorithms predicts prognosis in patients with diffuse large B-cell lymphoma treated with immunochemotherapy. , 2011, Blood.

[13]  L. Staudt,et al.  Pathogenesis of human B cell lymphomas. , 2012, Annual review of immunology.

[14]  L. Staudt,et al.  Concurrent expression of MYC and BCL2 in diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  K. Young,et al.  Immunohistochemical double-hit score is a strong predictor of outcome in patients with diffuse large B-cell lymphoma treated with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  A. Rosenwald,et al.  MYC status in concert with BCL2 and BCL6 expression predicts outcome in diffuse large B-cell lymphoma. , 2013, Blood.

[17]  W. Choi,et al.  MYC/BCL2 protein coexpression contributes to the inferior survival of activated B-cell subtype of diffuse large B-cell lymphoma and demonstrates high-risk gene expression signatures: a report from The International DLBCL Rituximab-CHOP Consortium Program. , 2013, Blood.

[18]  C. Flowers,et al.  Evaluating cell-of-origin subtype methods for predicting diffuse large B-cell lymphoma survival: a meta-analysis of gene expression profiling and immunohistochemistry algorithms. , 2014, Clinical lymphoma, myeloma & leukemia.

[19]  L. Staudt,et al.  Diffuse large B-cell lymphoma—treatment approaches in the molecular era , 2014, Nature Reviews Clinical Oncology.

[20]  W. Chan,et al.  MYC and BCL2 protein expression predicts survival in patients with diffuse large B‐cell lymphoma treated with rituximab , 2014, British journal of haematology.

[21]  Kai Fu,et al.  Determining cell-of-origin subtypes of diffuse large B-cell lymphoma using gene expression in formalin-fixed paraffin-embedded tissue. , 2014, Blood.

[22]  R. Gascoyne,et al.  Lenalidomide combined with R-CHOP overcomes negative prognostic impact of non-germinal center B-cell phenotype in newly diagnosed diffuse large B-Cell lymphoma: a phase II study. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[23]  S. Swerdlow WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues , 2017 .