Genome engineering using the CRISPR/Cas system

[1]  Yongping Huang,et al.  The CRISPR/Cas System mediates efficient genome engineering in Bombyx mori , 2013, Cell Research.

[2]  Erik J. Sontheimer,et al.  Self vs. non-self discrimination during CRISPR RNA-directed immunity , 2009, Nature.

[3]  Anindya Dutta,et al.  Small RNAs with Imperfect Match to Endogenous mRNA Repress Translation , 2003, Journal of Biological Chemistry.

[4]  Y. Nie,et al.  Generation of Genetically Modified Mice by Oocyte Injection of Androgenetic Haploid Embryonic Stem Cells , 2012, Cell.

[5]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[6]  Martin Leeb,et al.  Derivation of haploid embryonic stem cells from mouse embryos , 2011, Nature.

[7]  Dana Carroll,et al.  Stimulation of Homologous Recombination through Targeted Cleavage by Chimeric Nucleases , 2001, Molecular and Cellular Biology.

[8]  Jean-Paul Concordet,et al.  Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair , 2014, Genome research.

[9]  S Chandrasegaran,et al.  Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Bob Goldstein,et al.  Engineering the Caenorhabditis elegans Genome Using Cas9-Triggered Homologous Recombination , 2013, Nature Methods.

[11]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[12]  Eli J. Fine,et al.  DNA targeting specificity of RNA-guided Cas9 nucleases , 2013, Nature Biotechnology.

[13]  C. Barbas,et al.  ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. , 2013, Trends in biotechnology.

[14]  R. Jiao,et al.  TALEN or Cas9 - rapid, efficient and specific choices for genome modifications. , 2013, Journal of genetics and genomics = Yi chuan xue bao.

[15]  Han-Woong Lee,et al.  Knockout mice created by TALEN-mediated gene targeting , 2013, Nature Biotechnology.

[16]  Matthew J. Moscou,et al.  A Simple Cipher Governs DNA Recognition by TAL Effectors , 2009, Science.

[17]  Shu Kondo,et al.  Highly Improved Gene Targeting by Germline-Specific Cas9 Expression in Drosophila , 2013, Genetics.

[18]  Bing Yang,et al.  Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice , 2013, Nucleic acids research.

[19]  J. Keith Joung,et al.  High frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells , 2013, Nature Biotechnology.

[20]  Jeffry D Sander,et al.  Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins , 2013, Nature Biotechnology.

[21]  B. Li,et al.  Expression profiling reveals off-target gene regulation by RNAi , 2003, Nature Biotechnology.

[22]  Koji Sugiura,et al.  Efficient generation of large-scale genome-modified mice using gRNA and CAS9 endonuclease , 2013, Nucleic acids research.

[23]  Mike Boxem,et al.  CRISPR/Cas9-Targeted Mutagenesis in Caenorhabditis elegans , 2013, Genetics.

[24]  R. Barrangou,et al.  CRISPR/Cas, the Immune System of Bacteria and Archaea , 2010, Science.

[25]  T. Kiuchi,et al.  Recent progress in genome engineering techniques in the silkworm, Bombyx mori , 2014, Development, growth & differentiation.

[26]  S. Ha,et al.  Highly efficient gene knockout in mice and zebrafish with RNA-guided endonucleases , 2014, Genome research.

[27]  Luke A. Gilbert,et al.  Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression , 2013, Cell.

[28]  Jens Boch,et al.  Breaking the Code of DNA Binding Specificity of TAL-Type III Effectors , 2009, Science.

[29]  Jun Li,et al.  Targeted genome modification of crop plants using a CRISPR-Cas system , 2013, Nature Biotechnology.

[30]  Randall J. Platt,et al.  Optical Control of Mammalian Endogenous Transcription and Epigenetic States , 2013, Nature.

[31]  A. Pastink,et al.  DNA Double-Strand Break Repair by Homologous Recombination , 2002, Biological chemistry.

[32]  A. Kawahara,et al.  Genome editing using artificial site‐specific nucleases in zebrafish , 2014, Development, growth & differentiation.

[33]  Xin Zhang,et al.  Targeted mutagenesis in rice using CRISPR-Cas system , 2013, Cell Research.

[34]  Jeffry D. Sander,et al.  Heritable and Precise Zebrafish Genome Editing Using a CRISPR-Cas System , 2013, PloS one.

[35]  Marilyn Fisher,et al.  Simple and efficient CRISPR/Cas9‐mediated targeted mutagenesis in Xenopus tropicalis , 2013, Genesis.

[36]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[37]  Prashant Mali,et al.  Gene targeting of a disease-related gene in human induced pluripotent stem and embryonic stem cells. , 2009, Cell stem cell.

[38]  Peter Krawitz,et al.  Efficient CRISPR/Cas9 genome editing with low off-target effects in zebrafish , 2013, Development.

[39]  Jun Zhang,et al.  Generation of gene-modified mice via Cas9/RNA-mediated gene targeting , 2013, Cell Research.

[40]  L. Liaw,et al.  Targeted Genome Modification in Mice Using Zinc-Finger Nucleases , 2010, Genetics.

[41]  D. Menke Engineering subtle targeted mutations into the mouse genome , 2013, Genesis.

[42]  Alexander Smith,et al.  Specific targeting of cytosine methylation to DNA sequences in vivo , 2006, Nucleic acids research.

[43]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[44]  Bo Zhang,et al.  Highly Efficient Genome Modifications Mediated by CRISPR/Cas9 in Drosophila , 2013, Genetics.

[45]  Toni Cathomen,et al.  Structure-based redesign of the dimerization interface reduces the toxicity of zinc-finger nucleases , 2007, Nature Biotechnology.

[46]  Ying Peng,et al.  A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering , 2013, Fly.

[47]  Samira Kiani,et al.  Genetic engineering of human ES and iPS cells using TALE nucleases , 2011, Nature Biotechnology.

[48]  G. Church,et al.  CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering , 2013, Nature Biotechnology.

[49]  Kabin Xie,et al.  RNA-guided genome editing in plants using a CRISPR-Cas system. , 2013, Molecular plant.

[50]  P. J. Hurd,et al.  Characterisation of site-biased DNA methyltransferases: specificity, affinity and subsite relationships. , 2002, Nucleic acids research.

[51]  Ola Snøve,et al.  Many commonly used siRNAs risk off-target activity. , 2004, Biochemical and biophysical research communications.

[52]  R. Tuli,et al.  RNA-Guided Genome Editing for Target Gene Mutations in Wheat , 2013, G3: Genes, Genomes, Genetics.

[53]  P. Sternberg,et al.  Transgene-Free Genome Editing in Caenorhabditis elegans Using CRISPR-Cas , 2013, Genetics.

[54]  Chris P. Ponting,et al.  Highly Efficient Targeted Mutagenesis of Drosophila with the CRISPR/Cas9 System , 2013, Cell reports.

[55]  U. Bonas,et al.  Genetic and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria , 1989, Molecular and General Genetics MGG.

[56]  Susan Lindquist,et al.  Generation of Isogenic Pluripotent Stem Cells Differing Exclusively at Two Early Onset Parkinson Point Mutations , 2011, Cell.

[57]  George M. Church,et al.  Heritable genome editing in C. elegans via a CRISPR-Cas9 system , 2013, Nature Methods.

[58]  Jin-Soo Kim,et al.  Analysis of off-target effects of CRISPR/Cas-derived RNA-guided endonucleases and nickases , 2014, Genome research.

[59]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[60]  Albert Jeltsch,et al.  Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes , 2006, Nucleic acids research.

[61]  Albert Jeltsch,et al.  Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. , 2013, Journal of molecular biology.

[62]  I. Katic,et al.  Targeted Heritable Mutation and Gene Conversion by Cas9-CRISPR in Caenorhabditis elegans , 2013, Genetics.

[63]  T. Ochiya,et al.  Genome engineering of mammalian haploid embryonic stem cells using the Cas9/RNA system , 2013, PeerJ.

[64]  T. Bestor,et al.  Cytosine methylation targetted to pre-determined sequences , 1997, Nature Genetics.

[65]  S Chandrasegaran,et al.  A detailed study of the substrate specificity of a chimeric restriction enzyme. , 1999, Nucleic acids research.

[66]  Christian Frøkjær-Jensen Exciting Prospects for Precise Engineering of Caenorhabditis elegans Genomes with CRISPR/Cas9 , 2013, Genetics.

[67]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[68]  Qi Zhou,et al.  Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems , 2013, Nature Biotechnology.

[69]  G. Dianov,et al.  Mammalian Base Excision Repair: the Forgotten Archangel , 2013, Nucleic acids research.

[70]  Yongxiang Zhao,et al.  Heritable gene targeting in the mouse and rat using a CRISPR-Cas system , 2013, Nature Biotechnology.

[71]  Stefan Posch,et al.  TALENoffer: genome-wide TALEN off-target prediction , 2013, Bioinform..

[72]  John A. Calarco,et al.  Heritable Custom Genomic Modifications in Caenorhabditis elegans via a CRISPR–Cas9 System , 2013, Genetics.

[73]  James A. Thomson,et al.  Homologous recombination in human embryonic stem cells , 2003, Nature Biotechnology.

[74]  J. Zuber,et al.  Forward and reverse genetics through derivation of haploid mouse embryonic stem cells. , 2011, Cell stem cell.

[75]  R. Jaenisch,et al.  Efficient targeting of expressed and silent genes in human ESCs and iPSCs using zinc-finger nucleases , 2009, Nature Biotechnology.

[76]  Ignacio Anegon,et al.  Knockout Rats via Embryo Microinjection of Zinc-Finger Nucleases , 2009, Science.

[77]  Wataru Nomura,et al.  In vivo site-specific DNA methylation with a designed sequence-enabled DNA methylase. , 2007, Journal of the American Chemical Society.

[78]  Botao Zhang,et al.  Efficient genome editing in plants using a CRISPR/Cas system , 2013, Cell Research.

[79]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[80]  Yoshitaka Fujihara,et al.  Generation of mutant mice by pronuclear injection of circular plasmid expressing Cas9 and single guided RNA , 2013, Scientific Reports.

[81]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[82]  R. Jaenisch,et al.  One-Step Generation of Mice Carrying Reporter and Conditional Alleles by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[83]  Yoon-Young Jang,et al.  Efficient drug screening and gene correction for treating liver disease using patient‐specific stem cells , 2013, Hepatology.

[84]  M. Lieber,et al.  The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. , 2010, Annual review of biochemistry.

[85]  J. Vogel,et al.  CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III , 2011, Nature.

[86]  Susan R. Wente,et al.  Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system , 2013, Proceedings of the National Academy of Sciences.

[87]  Philip D. Gregory,et al.  Translating Dosage Compensation to Trisomy 21 , 2013, Nature.

[88]  D. Barnes Non-homologous end joining as a mechanism of DNA repair , 2001, Current Biology.

[89]  Pilar Blancafort,et al.  Epigenetic reprogramming of cancer cells via targeted DNA methylation , 2012, Epigenetics.

[90]  R. Kanaar,et al.  DNA double-strand break repair: all's well that ends well. , 2006, Annual review of genetics.

[91]  M. Kimura,et al.  Generation of an ICF Syndrome Model by Efficient Genome Editing of Human Induced Pluripotent Stem Cells Using the CRISPR System , 2013, International journal of molecular sciences.

[92]  M. Kladde,et al.  Site-selective in vivo targeting of cytosine-5 DNA methylation by zinc-finger proteins. , 2003, Nucleic acids research.

[93]  Xiaohui Xie,et al.  Biallelic genome modification in F0 Xenopus tropicalis embryos using the CRISPR/Cas system , 2013, Genesis.

[94]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[95]  David A. Scott,et al.  Double Nicking by RNA-Guided CRISPR Cas9 for Enhanced Genome Editing Specificity , 2013, Cell.

[96]  D. Stemple,et al.  The emerging use of zebrafish to model metabolic disease , 2013, Disease Models & Mechanisms.