RNA-RNA interactions in gene regulation: the coding and noncoding players.

The past few years have witnessed an exciting increase in the richness and complexity of RNA-mediated regulatory circuitries, including new types of RNA-RNA interaction that underlie key steps in gene expression control in an organized and probably hierarchic system to dictate final protein output. Both small (especially miRNAs) and long coding (lc) and noncoding (nc) RNAs contain structural domains that can sense and bind other RNAs via complementary base pairing. The versatility of the interaction confers multiple roles to RNA-RNA hybrids, from control of RNA biogenesis to competition for common targets. Here, we focus on the emerging evidence around RNA networks and their impact on gene expression regulation in light of recent breakthroughs around the crosstalk between coding RNAs and ncRNAs.

[1]  Sebastian D. Mackowiak,et al.  Circular RNAs are a large class of animal RNAs with regulatory potency , 2013, Nature.

[2]  Tim R. Mercer,et al.  Expression of distinct RNAs from 3′ untranslated regions , 2010, Nucleic acids research.

[3]  Christophe Dez,et al.  RNA structure and function in C/D and H/ACA s(no)RNPs. , 2004, Current opinion in structural biology.

[4]  A. G. de Herreros,et al.  A natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithelial-mesenchymal transition. , 2008, Genes & development.

[5]  M. Todesco,et al.  Target mimicry provides a new mechanism for regulation of microRNA activity , 2007, Nature Genetics.

[6]  Weining Yang,et al.  Versican 3′‐untranslated region (3′‐UTR) functions as a ceRNA in inducing the development of hepatocellular carcinoma by regulating miRNA activity , 2013, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[7]  Howard Y. Chang,et al.  Genome regulation by long noncoding RNAs. , 2012, Annual review of biochemistry.

[8]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[9]  Margaret S. Ebert,et al.  MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells , 2007, Nature Methods.

[10]  Joshua R. Elmore,et al.  Essential features and rational design of CRISPR RNAs that function with the Cas RAMP module complex to cleave RNAs. , 2012, Molecular cell.

[11]  Howard Y. Chang,et al.  Control of somatic tissue differentiation by the long non-coding RNA TINCR , 2012, Nature.

[12]  Ling-Ling Chen,et al.  Complementary Sequence-Mediated Exon Circularization , 2014, Cell.

[13]  Jiayi Wang,et al.  CREB up-regulates long non-coding RNA, HULC expression through interaction with microRNA-372 in liver cancer , 2010, Nucleic acids research.

[14]  P. Pandolfi,et al.  A coding-independent function of gene and pseudogene mRNAs regulates tumour biology , 2010, Nature.

[15]  Julian Downward,et al.  Hmga2 functions as a competing endogenous RNA to promote lung cancer progression , 2013, Nature.

[16]  P. Sætrom,et al.  MicroRNA-directed transcriptional gene silencing in mammalian cells , 2008, Proceedings of the National Academy of Sciences.

[17]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[18]  S. Butcher,et al.  Towards understanding the catalytic core structure of the spliceosome. , 2005, Biochemical Society transactions.

[19]  Cameron Myhrvold,et al.  Using synthetic RNAs as scaffolds and regulators , 2015, Nature Structural &Molecular Biology.

[20]  Achim Schnaufer,et al.  Complex management: RNA editing in trypanosomes. , 2005, Trends in biochemical sciences.

[21]  D. Cacchiarelli,et al.  A Long Noncoding RNA Controls Muscle Differentiation by Functioning as a Competing Endogenous RNA , 2011, Cell.

[22]  N. Rajewsky,et al.  circRNA biogenesis competes with pre-mRNA splicing. , 2014, Molecular cell.

[23]  Ferdinando Di Cunto,et al.  Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs , 2011, Cell.

[24]  Jørgen Kjems,et al.  miRNA‐dependent gene silencing involving Ago2‐mediated cleavage of a circular antisense RNA , 2011, The EMBO journal.

[25]  Chaochun Liu,et al.  The imprinted H19 lncRNA antagonizes let-7 microRNAs. , 2013, Molecular cell.

[26]  William R. Jeck,et al.  Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk , 2010, PLoS genetics.

[27]  Yaou Zhang,et al.  Expression of Versican 3′-Untranslated Region Modulates Endogenous MicroRNA Functions , 2010, PloS one.

[28]  Martin Mueller,et al.  The H19/let-7 double-negative feedback loop contributes to glucose metabolism in muscle cells , 2014, Nucleic acids research.

[29]  G. Hannon,et al.  Dogma derailed: the many influences of RNA on the genome. , 2013, Molecular cell.

[30]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[31]  P. Waterhouse,et al.  Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Peter Goodfellow,et al.  Circular transcripts of the testis-determining gene Sry in adult mouse testis , 1993, Cell.

[33]  D. Bartel,et al.  The impact of microRNAs on protein output , 2008, Nature.

[34]  P. Pandolfi,et al.  In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma , 2011, Cell.

[35]  T. Tuschl,et al.  Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. , 2004, Molecular cell.

[36]  T. Rana,et al.  Specific and potent RNAi in the nucleus of human cells , 2005, Nature Structural &Molecular Biology.

[37]  Charles Gawad,et al.  Circular RNAs Are the Predominant Transcript Isoform from Hundreds of Human Genes in Diverse Cell Types , 2012, PloS one.

[38]  P. Pandolfi,et al.  A ceRNA Hypothesis: The Rosetta Stone of a Hidden RNA Language? , 2011, Cell.

[39]  Hervé Seitz,et al.  Redefining MicroRNA Targets , 2009, Current Biology.

[40]  J. Steitz,et al.  The Noncoding RNA Revolution—Trashing Old Rules to Forge New Ones , 2014, Cell.

[41]  Riccardo Zecchina,et al.  Modelling Competing Endogenous RNA Networks , 2013, PloS one.

[42]  Michael K. Slevin,et al.  Circular RNAs are abundant, conserved, and associated with ALU repeats. , 2013, RNA.

[43]  Keith W. Vance,et al.  Crosstalking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7 , 2014, Nature Structural &Molecular Biology.

[44]  Manuel de la Mata,et al.  Control of alternative splicing through siRNA-mediated transcriptional gene silencing , 2009, Nature Structural &Molecular Biology.

[45]  T. Pederson,et al.  MicroRNA-206 colocalizes with ribosome-rich regions in both the nucleolus and cytoplasm of rat myogenic cells , 2006, Proceedings of the National Academy of Sciences.

[46]  R. Parker,et al.  Circular RNAs: diversity of form and function , 2014, RNA.

[47]  N. Sharpless,et al.  Detecting and characterizing circular RNAs , 2014, Nature Biotechnology.

[48]  D. Corey,et al.  Involvement of AGO1 and AGO2 in mammalian transcriptional silencing , 2006, Nature Structural &Molecular Biology.

[49]  Shanshan Zhu,et al.  Circular intronic long noncoding RNAs. , 2013, Molecular cell.

[50]  F. Liu,et al.  The Long Noncoding RNA CHRF Regulates Cardiac Hypertrophy by Targeting miR-489 , 2014, Circulation research.

[51]  J. Steitz,et al.  Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation , 2007, Science.

[52]  M. Esteller,et al.  Regulation of pri-miRNA processing by a long noncoding RNA transcribed from an ultraconserved region. , 2014, Molecular cell.

[53]  M. Marra,et al.  Extensive relationship between antisense transcription and alternative splicing in the human genome. , 2011, Genome research.

[54]  Petra Schwille,et al.  Importin 8 Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs , 2009, Cell.

[55]  Matteo Figliuzzi,et al.  MicroRNAs as a selective channel of communication between competing RNAs: a steady-state theory. , 2012, Biophysical journal.

[56]  Peilong Li,et al.  Role of TGFBIp in Wound Healing and Mucin Expression in Corneal Epithelial Cells , 2017, Yonsei medical journal.

[57]  Xuerui Yang,et al.  An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma , 2011, Cell.

[58]  U. A. Ørom,et al.  MicroRNA-10a binds the 5'UTR of ribosomal protein mRNAs and enhances their translation. , 2008, Molecular cell.

[59]  J. Steitz,et al.  Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA , 2010, Science.

[60]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[61]  V. Kim,et al.  Regulation of microRNA biogenesis , 2014, Nature Reviews Molecular Cell Biology.

[62]  D. Perkins,et al.  Nuclear and cytoplasmic localization of neural stem cell microRNAs. , 2011, RNA.

[63]  Phillip A. Sharp,et al.  Emerging Roles for Natural MicroRNA Sponges , 2010, Current Biology.

[64]  A. Pasquinelli,et al.  Auto-regulation of miRNA biogenesis by let-7 and Argonaute , 2012, Nature.

[65]  J. Valcárcel,et al.  Argonaute-1 binds transcriptional enhancers and controls constitutive and alternative splicing in human cells , 2014, Proceedings of the National Academy of Sciences.

[66]  John J Rossi,et al.  Argonaute-1 directs siRNA-mediated transcriptional gene silencing in human cells , 2006, Nature Structural &Molecular Biology.

[67]  K. Morris,et al.  The rise of regulatory RNA , 2014, Nature Reviews Genetics.

[68]  J. Kjems,et al.  Natural RNA circles function as efficient microRNA sponges , 2013, Nature.

[69]  E. Izaurralde,et al.  Gene silencing by microRNAs: contributions of translational repression and mRNA decay , 2011, Nature Reviews Genetics.

[70]  K. Zen,et al.  Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: evidence for a microRNA hierarchy system , 2011, Cell Research.

[71]  Matteo Figliuzzi,et al.  RNA-based regulation: dynamics and response to perturbations of competing RNAs. , 2013, Biophysical journal.

[72]  Alessandro Fatica,et al.  A Feedforward Regulatory Loop between HuR and the Long Noncoding RNA linc-MD1 Controls Early Phases of Myogenesis , 2014, Molecular cell.

[73]  Phillip A Sharp,et al.  MicroRNA sponges: progress and possibilities. , 2010, RNA.

[74]  D. Bartel MicroRNAs: Target Recognition and Regulatory Functions , 2009, Cell.

[75]  Vikram Agarwal,et al.  Assessing the ceRNA hypothesis with quantitative measurements of miRNA and target abundance. , 2014, Molecular cell.

[76]  Hui Zhou,et al.  Deep Sequencing of Human Nuclear and Cytoplasmic Small RNAs Reveals an Unexpectedly Complex Subcellular Distribution of miRNAs and tRNA 3′ Trailers , 2010, PloS one.

[77]  K. Morris,et al.  A pseudogene long noncoding RNA network regulates PTEN transcription and translation in human cells , 2013, Nature Structural &Molecular Biology.

[78]  B. Graveley,et al.  RNA-Guided RNA Cleavage by a CRISPR RNA-Cas Protein Complex , 2009, Cell.

[79]  R. Zecchina,et al.  Integrated transcriptional and competitive endogenous RNA networks are cross-regulated in permissive molecular environments , 2013, Proceedings of the National Academy of Sciences.

[80]  Michael Niepmann,et al.  microRNA-122 stimulates translation of hepatitis C virus RNA , 2008, The EMBO journal.

[81]  R. Place,et al.  MicroRNA-373 induces expression of genes with complementary promoter sequences , 2008, Proceedings of the National Academy of Sciences.

[82]  E. Wentzel,et al.  A Hexanucleotide Element Directs MicroRNA Nuclear Import , 2007, Science.

[83]  D. Bartel,et al.  Expanded identification and characterization of mammalian circular RNAs , 2014, Genome Biology.

[84]  Ling Fang,et al.  Expression of CD44 3′-untranslated region regulates endogenous microRNA functions in tumorigenesis and angiogenesis , 2010, Nucleic acids research.