A parallel generator for sparse unstructured meshes to solve the eikonal equation

Abstract Mesh generation is the first step in a wide range of applications including navigation for robots or virtual agents in pedestrian simulations. To find the shortest travel time to a target, a common technique is to solve the eikonal equation on a mesh. We propose EikMesh, an extension of the DistMesh algorithm. EikMesh is a fast parallel mesh generator that reduces the number of mesh points, and thus the computation time, while maintaining precision of numerical solvers on the mesh. It automatically refines where desired, in our case, where the eikonal equation undergoes changes, e.g. near obstacles. The first crucial step is the generation of a sophisticated initial mesh which reduces the number of smoothing steps. In addition, EikMesh avoids expensive Delaunay-re-triangulations. Space filling curves manage storage space in a cache-friendly manner. EikMesh scales better than the parallelized traditional DistMesh and significantly outperforms it for a number of test cases.

[1]  Benedikt Zönnchen,et al.  Queuing at Bottlenecks Using a Dynamic Floor Field for Navigation , 2014 .

[2]  Jonathan Richard Shewchuk,et al.  Triangle: Engineering a 2D Quality Mesh Generator and Delaunay Triangulator , 1996, WACG.

[3]  Olivier Devillers,et al.  The Delaunay Hierarchy , 2002, Int. J. Found. Comput. Sci..

[4]  Ross T. Whitaker,et al.  A Fast Iterative Method for Eikonal Equations , 2008, SIAM J. Sci. Comput..

[5]  Tamal K. Dey,et al.  Delaunay Refinement for Piecewise Smooth Complexes , 2007, SODA '07.

[6]  G. Rodrigue,et al.  A generalized front marching algorithm for the solution of the eikonal equation , 2003 .

[7]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[8]  Hongkai Zhao,et al.  A fast sweeping method for Eikonal equations , 2004, Math. Comput..

[9]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[10]  Luc Devroye,et al.  A Note on Point Location in Delaunay Triangulations of Random Points , 1998, Algorithmica.

[11]  Hans-Joachim Bungartz,et al.  The Superposition Principle: A Conceptual Perspective on Pedestrian Stream Simulations , 2016 .

[12]  Olivier Devillers,et al.  Walking in a triangulation , 2001, SCG '01.

[13]  D. F. Watson Computing the n-Dimensional Delaunay Tesselation with Application to Voronoi Polytopes , 1981, Comput. J..

[14]  Gerta Köster,et al.  Natural discretization of pedestrian movement in continuous space. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[15]  Jonas Koko,et al.  A Matlab mesh generator for the two-dimensional finite element method , 2015, Appl. Math. Comput..

[16]  Javier V. Gómez,et al.  Fast Methods for Eikonal Equations: An Experimental Survey , 2015, IEEE Access.

[17]  Eberhard Haug,et al.  Real-time micro-modelling of a million pedestrians , 2016 .

[18]  Tamal K. Dey,et al.  Quality meshing with weighted Delaunay refinement , 2002, SODA '02.

[19]  Ernst P. Mücke,et al.  Fast randomized point location without preprocessing in two- and three-dimensional Delaunay triangulations , 1996, SCG '96.

[20]  J A Sethian,et al.  Computing geodesic paths on manifolds. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Charles L. Lawson,et al.  Transforming triangulations , 1972, Discret. Math..

[22]  Joshua A. Levine,et al.  A Practical Delaunay Meshing Algorithm for aLarge Class of Domains* , 2007, IMR.

[23]  Jim Ruppert,et al.  A new and simple algorithm for quality 2-dimensional mesh generation , 1993, SODA '93.

[24]  Paresh Parikh,et al.  Generation of three-dimensional unstructured grids by the advancing-front method , 1988 .

[25]  Alexander Pfaffinger,et al.  Dynamic Medium Scale Navigation Using Dynamic Floor Fields , 2014 .

[26]  Michael Bader,et al.  Efficiency considerations in triangular adaptive mesh refinement , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[27]  J A Sethian,et al.  A fast marching level set method for monotonically advancing fronts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[29]  Steve Oudot,et al.  Provably good sampling and meshing of surfaces , 2005, Graph. Model..

[30]  Garry Rodrigue,et al.  Solving the Eikonal equation on an adaptive mesh , 2005, Appl. Math. Comput..