Characterization of dissolved organic matter in northern peatland soil porewaters by ultra high resolution mass spectrometry

[1]  D. Burdige,et al.  Radiocarbon evidence for the importance of surface vegetation on fermentation and methanogenesis in contrasting types of boreal peatlands , 2008 .

[2]  T. Dittmar,et al.  A simple and efficient method for the solid‐phase extraction of dissolved organic matter (SPE‐DOM) from seawater , 2008 .

[3]  C. Bryant,et al.  Diffusion and mass flow of dissolved carbon dioxide, methane, and dissolved organic carbon in a 7-m deep raised peat bog , 2008 .

[4]  P. Hatcher,et al.  Advanced instrumental approaches for characterization of marine dissolved organic matter: extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. , 2007, Chemical reviews.

[5]  Steve Frolking,et al.  Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions , 2006 .

[6]  A. Marshall,et al.  Atmospheric pressure photoionization fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis. , 2006, Analytical chemistry.

[7]  Alan G. Marshall,et al.  Truly “exact” mass: Elemental composition can be determined uniquely from molecular mass measurement at ∼0.1 mDa accuracy for molecules up to ∼500 Da , 2006 .

[8]  T. Dittmar,et al.  From mass to structure: an aromaticity index for high‐resolution mass data of natural organic matter , 2006 .

[9]  J. Chanton,et al.  Carbon and Hydrogen Isotopic Effects in Microbial, Methane from Terrestrial Environments , 2005 .

[10]  Gerhard Kattner,et al.  Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry , 2005 .

[11]  Sunghwan Kim,et al.  Graphical method for analysis of ultrahigh-resolution broadband mass spectra of natural organic matter, the van Krevelen diagram. , 2003, Analytical chemistry.

[12]  M. J. Chalmers,et al.  Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. , 2003, Analytical chemistry.

[13]  A. Marshall,et al.  Exact masses and chemical formulas of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. , 2003, Analytical chemistry.

[14]  A. Marshall,et al.  Ionization and fragmentation of humic substances in electrospray ionization Fourier transform-ion cyclotron resonance mass spectrometry. , 2002, Analytical chemistry.

[15]  Michael A. Freitas,et al.  The application of electrospray ionization mass spectrometry (ESI MS) to the structural characterization of natural organic matter , 2002 .

[16]  G. Cody,et al.  Lignin demethylation and polysaccharide decomposition in spruce sapwood degraded by brown rot fungi , 2002 .

[17]  Michael A. Freitas,et al.  High-resolution Fourier transform ion cyclotron resonance mass spectrometry of humic and fulvic acids: improvements and comparisons. , 2002, Analytical chemistry.

[18]  Chris Freeman,et al.  An enzymic 'latch' on a global carbon store , 2001, Nature.

[19]  J. Chanton,et al.  Radiocarbon and stable carbon isotopic evidence for transport and transformation of dissolved organic carbon, dissolved inorganic carbon, and CH4 in a northern Minnesota peatland , 2000 .

[20]  E. Hornibrook,et al.  Factors Influencing Stable Isotope Ratios in CH4 and CO2 Within Subenvironments of Freshwater Wetlands: Implications for δ-Signatures of Emissions , 2000, Isotopes in environmental and health studies.

[21]  J. Yavitt,et al.  Phenol oxidase activity in peatlands in New York State: Response to summer drought and peat type , 2000, Wetlands.

[22]  E. Hornibrook,et al.  Evolution of stable carbon isotope compositions for methane and carbon dioxide in freshwater wetlands and other anaerobic environments , 2000 .

[23]  J. A. Rice,et al.  Effect of experimental parameters on the ESI FT-ICR mass spectrum of fulvic acid. , 2000, Analytical chemistry.

[24]  R. Aravena,et al.  Carbon isotopes in peat, DOC, CO2, and CH4 in a Holocene peatland on Dartmoor, southwest England , 1999 .

[25]  K. R. Reddy,et al.  Regulation of Organic Matter Decomposition and Nutrient Release in a Wetland Soil , 1998 .

[26]  E. Hornibrook,et al.  Reply to comment by S. Waldron, A. Fallick, and A. Hall on "Spatial distribution of microbial methane production pathways in temperate zone wetland soils: Stable carbon and hydrogen isotope evidence" , 1997 .

[27]  J. Chanton,et al.  Radiocarbon evidence for the substrates supporting methane formation within northern Minnesota peatlands , 1995 .

[28]  S. Cringle,et al.  Microelectrode and Modelling Study of Oxygen Distribution in Roots , 1994 .

[29]  P. Quay,et al.  CH4 production via CO2 reduction in a temperate bog: A source of 13C-depIeted CH4 , 1992 .

[30]  B. Sorrell,et al.  Biogeochemistry of billabong sediments. I. The effect of macrophytes. , 1991 .

[31]  E. Gorham Northern Peatlands: Role in the Carbon Cycle and Probable Responses to Climatic Warming. , 1991, Ecological applications : a publication of the Ecological Society of America.

[32]  F. Verdun,et al.  Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User's Handbook , 1990 .

[33]  R. Knowles,et al.  METHANE AND CARBON DIOXIDE EVOLUTION FROM SUBARCTIC FENS , 1987 .

[34]  R. Hodson,et al.  Anaerobic Biodegradation of the Lignin and Polysaccharide Components of Lignocellulose and Synthetic Lignin by Sediment Microflora , 1984, Applied and environmental microbiology.

[35]  R. S. Clymo,et al.  The Limits to Peat Bog Growth , 1984 .

[36]  P. Glaser,et al.  The patterned mires of the Red Lake Peatland, northern Minnesota: vegetation, water chemistry, and landforms , 1981 .

[37]  Kerstin O. Griffin Paleoecological aspects of the Red Lake Peatland, northern Minnesota , 1977 .

[38]  Colin R. Janssen Myrtle Lake: a late- and post-glacial pollen diagram from northern Minnesota , 1968 .

[39]  E. Kendrick A Mass Scale Based on CH2 = 14.0000 for High Resolution Mass Spectrometry of Organic Compounds. , 1963 .

[40]  M. L. Heinselman,et al.  Forest Sites, Bog Processes, and Peatland Types in the Glacial Lake Agassiz Region, Minnesota , 1963 .

[41]  T. Dittmar,et al.  Diagenesis of marine dissolved organic matter: a molecular approach , 2006 .

[42]  Caroline S. Harwood,et al.  THE β-KETOADIPATE PATHWAY AND THE BIOLOGY OF SELF-IDENTITY , 1996 .

[43]  A G Marshall,et al.  A high-performance modular data system for Fourier transform ion cyclotron resonance mass spectrometry. , 1996, Rapid communications in mass spectrometry : RCM.

[44]  M. Senko,et al.  Electrospray ionization Fourier transform ion cyclotron resonance at 9.4 T. , 1996, Rapid communications in mass spectrometry : RCM.

[45]  S. P. Mathur,et al.  Carbon Isotopic Composition of Deep Carbon Gases in an Ombrogenous Peatland, Northwestern Ontario, Canada , 1993, Radiocarbon.

[46]  T. Painter Lindow man, tollund man and other peat-bog bodies: The preservative and antimicrobial action of Sphagnan, a reactive glycuronoglycan with tanning and sequestering properties , 1991 .

[47]  Donald I. Siegel,et al.  Groundwater flow in a bog- fen complex, Lost River peatland, northern Minnesota. , 1987 .

[48]  F. McLafferty Interpretation of Mass Spectra , 1966 .