THE AVERAGING PRINCIPLE AND THEOREMS ON LARGE DEVIATIONS

ContentsIntroduction § 1. Null approximation and normal deviations § 2. Large deviations from the averaged system § 3. Large deviations. Continuation § 4. Moderate deviations § 5. The behaviour of the system over large time intervals § 6. Examples. Remarks § 7. The averaging principle for stochastic differential equations § 8. Inequalities for the probabilities of large deviationsReferences

[1]  Communications of the Moscow Mathematical Society: Degenerate Diffusion Processes and Differential Equations with a Small Parameter , 1978 .

[2]  Joe W. Harris,et al.  Principles of Algebraic Geometry , 1978 .

[3]  J. Gärtner On Large Deviations from the Invariant Measure , 1977 .

[4]  J. Gärtner Theorems on Large Deviations for a Certain Class of Random Processes , 1976 .

[5]  A. Friedman Small Random Perturbations of Dynamical Systems , 1976 .

[6]  M. I. Freidlin Stability of highly reliable systems , 1975 .

[7]  A. Grin On Small Random Impulsive Perturbations of Dynamical Systems , 1975 .

[8]  S. Varadhan,et al.  Asymptotic evaluation of certain Markov process expectations for large time , 1975 .

[9]  M. Freidlin The Action Functional for a Class of Stochastic Processes , 1973 .

[10]  M. Freidlin,et al.  Some Problems Concerning Stability under Small Random Perturbations , 1973 .

[11]  Y. Sinai GIBBS MEASURES IN ERGODIC THEORY , 1972 .

[12]  M. Freidlin,et al.  ON SMALL RANDOM PERTURBATIONS OF DYNAMICAL SYSTEMS , 1970 .

[13]  Iosif Ilitch Gikhman,et al.  Introduction to the theory of random processes , 1969 .

[14]  R. Has’minskiĭ On Stochastic Processes Defined by Differential Equations with a Small Parameter , 1966 .

[15]  Tosio Kato Perturbation theory for linear operators , 1966 .

[16]  Instability intervals of Hill's equation , 1964 .

[17]  Joseph B. Keller,et al.  Instability intervals of Hill's equation , 1963 .

[18]  N. DeClaris,et al.  Asymptotic methods in the theory of non-linear oscillations , 1963 .

[19]  M. Freidlin Diffusion Processes with Reflection and Problems with a Directional Derivative on a Manifold with a Boundary , 1963 .

[20]  V. Volosov,et al.  AVERAGING IN SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS , 1962 .

[21]  T. Kasuga On the adiabatic theorem for the Hamiltonian system of differential equations in the classical mechanics, III , 1961 .

[22]  V. Volkonskii,et al.  Some Limit Theorems for Random Functions. II , 1959 .

[23]  C. Bloch,et al.  Sur la théorie des perturbations des états liés , 1958 .

[24]  Yu. V. Prokhorov Convergence of Random Processes and Limit Theorems in Probability Theory , 1956 .