In situ Synthesis of Gel Polymer Electrolytes for Lithium Batteries

[1]  Ying Tian,et al.  In situ polymerization infiltrated three-dimensional garnet-based framework for quasi-solid lithium metal batteries , 2022, Electrochimica Acta.

[2]  S. Hirano,et al.  Multi-strategy synergistic in-situ constructed gel electrolyte-binder system for high-performance lithium-ion batteries with Si-based anode , 2022, Electrochimica Acta.

[3]  Shiguo Zhang,et al.  Solvate Ionic Liquid-Based Ionogels for Lithium Metal Batteries Over a Wide Temperature Range , 2022, SSRN Electronic Journal.

[4]  Yuehua Wen,et al.  Garnet Li7La3Zr2O12-Based Solid-State Lithium Batteries Achieved by In Situ Thermally Polymerized Gel Polymer Electrolyte. , 2022, ACS applied materials & interfaces.

[5]  H. Duan,et al.  Enhanced Performance of Flexible Quasi-Solid-State Lithium Batteries with High-Loading Cathode Enabled by Laser Drilling , 2022, SSRN Electronic Journal.

[6]  Jiawei Zhong,et al.  Polyacrylonitrile Porous Membrane-Based Gel Polymer Electrolyte by In Situ Free-Radical Polymerization for Stable Li Metal Batteries. , 2022, ACS applied materials & interfaces.

[7]  Xinghui Wang,et al.  A quasi-solid-state electrolyte with high ionic conductivity for stable lithium-ion batteries , 2022, Science China Technological Sciences.

[8]  Zhigang Xue,et al.  Ion-compensation regime between electrolyte and cathode to prepare advanced lithium metal batteries , 2022, Materials Today Energy.

[9]  J. Tu,et al.  Cellulose mesh supported ultrathin ceramic-based composite electrolyte for high-performance Li metal batteries , 2022, Journal of Membrane Science.

[10]  Fang Chen,et al.  In-situ generation of poly(ionic liquid) flexible quasi-solid electrolyte supported by polyhedral oligomeric silsesquioxane / polyvinylidene fluoride electrospun membrane for lithium metal battery , 2022, Journal of Membrane Science.

[11]  Woong‐Ryeol Yu,et al.  Gel Polymer Electrolytes Based on Crosslinked Networks by the Introduction of an Ionic Liquid Crosslinker with Ethylene Oxide Arms , 2022, ACS Applied Energy Materials.

[12]  Lei Song,et al.  Phosphorus‐Fixed Stable Interfacial Nonflammable Gel Polymer Electrolyte for Safe Flexible Lithium‐Ion Batteries , 2022, Advanced Functional Materials.

[13]  Hongcai Gao,et al.  Minimizing the interfacial resistance for a solid-state lithium battery running at room temperature , 2022, Chemical Engineering Journal.

[14]  Zhian Zhang,et al.  The improvement of polymer gel electrolyte properties by the compound initiator , 2022, Materials Letters.

[15]  Yongzhu Fu,et al.  Transference Number Reinforced-Based Gel Copolymer Electrolyte for Dendrite-Free Lithium Metal Batteries. , 2022, ACS applied materials & interfaces.

[16]  Xingbao Zhu,et al.  PEGDA-SN as Both Solid-State Electrolyte and Solid-Solid Interface Material for Li-O2 Battery , 2022, Journal of the Electrochemical Society.

[17]  Jun Sun,et al.  Constructing flame-retardant gel polymer electrolytes via multiscale free radical annihilating agents for Ni-rich lithium batteries , 2022, Energy Storage Materials.

[18]  Y. Lai,et al.  Implanting an ion-selective “skin” in electrolyte towards high-energy and safe lithium-sulfur battery , 2022, Matter.

[19]  J. Tu,et al.  A cleverly designed asymmetrical composite electrolyte via in-situ polymerization for high-performance, dendrite-free solid state lithium metal battery , 2022, Chemical Engineering Journal.

[20]  Gaoping Cao,et al.  Enabling Stable Cycling of 4.6 V High-Voltage LiCoO2 with an In Situ-Modified PEGDA-Based Quasi-Solid Electrolyte , 2022, ACS Applied Energy Materials.

[21]  Whangi Kim,et al.  Synthesis and Characterization of Gel Polymer Electrolyte Based on Epoxy Group via Cationic Ring-Open Polymerization for Lithium-Ion Battery , 2022, Membranes.

[22]  Dinggen Li,et al.  Self-Healing Polymer Electrolyte for Dendrite-Free Li Metal Batteries with Ultra-High-Voltage Ni-Rich Layered Cathodes. , 2022, Small.

[23]  Huan Wang,et al.  A two-step strategy for constructing stable gel polymer electrolyte interfaces for long-life cycle lithium metal batteries , 2022, Journal of Materiomics.

[24]  S. Li,et al.  In-situ polymerization with dual-function electrolyte additive toward future lithium metal batteries , 2022, Materials Today Energy.

[25]  Pengjian Zuo,et al.  Poly (Vinyl Ethylene Carbonate)-Based Dual-Salt Gel Polymer Electrolyte Enabling High Voltage Lithium Metal Batteries , 2022, SSRN Electronic Journal.

[26]  G. Sui,et al.  Self‐Enhancing Gel Polymer Electrolyte by In Situ Construction for Enabling Safe Lithium Metal Battery , 2021, Advanced science.

[27]  Lina Wang,et al.  Stable Li-Metal Batteries Enabled by in Situ Gelation of an Electrolyte and In-Built Fluorinated Solid Electrolyte Interface. , 2021, ACS applied materials & interfaces.

[28]  Li Li,et al.  Study on the Interfacial Mechanism of Bisalt Polyether Electrolyte for Lithium Metal Batteries , 2021, Advanced Functional Materials.

[29]  Z. Bi,et al.  Dual-interface reinforced flexible solid garnet batteries enabled by in-situ solidified gel polymer electrolytes , 2021, Nano Energy.

[30]  F. Ciucci,et al.  In Situ Fabricated Quasi‐Solid Polymer Electrolyte for High‐Energy‐Density Lithium Metal Battery Capable of Subzero Operation , 2021, Advanced Energy Materials.

[31]  T. Kyu,et al.  In Situ Polymerized Electrolytes with Fully Cross-Linked Networks Boosting High Ionic Conductivity and Capacity Retention for Lithium Ion Batteries , 2021, ACS Applied Energy Materials.

[32]  Yue Ma,et al.  Fumaronitrile-fixed in-situ gel polymer electrolyte balancing high safety and superior electrochemical performance for Li metal batteries , 2021, Energy Storage Materials.

[33]  Jianyao Yao,et al.  Hybrid poly-ether/carbonate ester electrolyte engineering enables high oxidative stability for quasi-solid-state lithium metal batteries , 2021, Materials Today Energy.

[34]  Hye-Min Kim,et al.  Quasi-Solid-State Electrolyte Using an In Situ Click Reaction for Safety-Enhanced Lithium-Ion Batteries , 2021, Journal of The Electrochemical Society.

[35]  M. Armand,et al.  A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries , 2021, Nature Communications.

[36]  Ziyang Guo,et al.  Protecting Li-metal anode with ethylenediamine-based layer and in-situ formed gel polymer electrolyte to construct the high-performance Li–CO2 battery , 2021 .

[37]  Zhen-guo Wu,et al.  Facile In Situ Chemical Cross-Linking Gel Polymer Electrolyte, which Confines the Shuttle Effect with High Ionic Conductivity and Li-Ion Transference Number for Quasi-Solid-State Lithium-Sulfur Battery. , 2021, ACS applied materials & interfaces.

[38]  Xizheng Liu,et al.  Immobilizing Ceramic Electrolyte Particles into a Gel Matrix Formed In Situ for Stable Li-Metal Batteries. , 2021, ACS applied materials & interfaces.

[39]  Xizheng Liu,et al.  In situ preparation of gel polymer electrolyte for lithium batteries: Progress and perspectives , 2021, InfoMat.

[40]  Zhenpu Shi,et al.  In Situ Gel Polymer Electrolyte with Inhibited Lithium Dendrite Growth and Enhanced Interfacial Stability for Lithium-Metal Batteries. , 2021, ACS applied materials & interfaces.

[41]  Suojiang Zhang,et al.  In‐Built Quasi‐Solid‐State Poly‐Ether Electrolytes Enabling Stable Cycling of High‐Voltage and Wide‐Temperature Li Metal Batteries , 2021, Advanced Functional Materials.

[42]  S. Greenbaum,et al.  Examining the Impact of Polyzwitterion Chemistry on Lithium Ion Transport in Ionogel Electrolytes , 2021 .

[43]  Shichao Zhang,et al.  A Flexible Li-Air Battery Workable under Harsh Conditions Based on an Integrated Structure: A Composite Lithium Anode Encased in a Gel Electrolyte. , 2021, ACS applied materials & interfaces.

[44]  Hansong Cheng,et al.  Enabling interfacial stability via 3D networking single ion conducting nano fiber electrolyte for high performance lithium metal batteries , 2021 .

[45]  Li-zhen Fan,et al.  A novel gel polymer electrolyte based on trimethylolpropane trimethylacrylate/ionic liquid via in situ thermal polymerization for lithium-ion batteries , 2021 .

[46]  Renjie Chen,et al.  In-Situ synthesized Non-flammable gel polymer electrolyte enable highly safe and Dendrite-Free lithium metal batteries , 2021, Chemical Engineering Journal.

[47]  Meng Li,et al.  A cross-linked gel polymer electrolyte employing cellulose acetate matrix and layered boron nitride filler prepared via in situ thermal polymerization , 2021 .

[48]  S. Hou,et al.  Crosslinked solidified gel electrolytes via in-situ polymerization featuring high ionic conductivity and stable lithium deposition for long-term durability lithium battery , 2020 .

[49]  M. Armand,et al.  Immunizing lithium metal anodes against dendrite growth using protein molecules to achieve high energy batteries , 2020, Nature Communications.

[50]  G. Cui,et al.  Frontier Orbital Energy-Customized Ionomer-based Polymer Electrolyte for High-voltage Lithium Metal Batteries. , 2020, ACS applied materials & interfaces.

[51]  Dong‐Won Kim,et al.  Hybrid separator containing reactive, nanostructured alumina promoting in-situ gel electrolyte formation for lithium-ion batteries with good cycling stability and enhanced safety , 2020 .

[52]  H. Ming,et al.  A new composite gel polymer electrolyte based on matrix of PEGDA with high ionic conductivity for lithium-ion batteries , 2020 .

[53]  Xin Guo,et al.  High-performance lithium metal batteries with ultraconformal interfacial contacts of quasi-solid electrolyte to electrodes , 2020, Energy Storage Materials.

[54]  Haiyang Liao,et al.  Mechanical strong polymer cross-linking PVDF nanofiber electrolyte for lithium-ion batteries , 2020, Ionics.

[55]  Weihua Chen,et al.  The polymerization capability of alkenyl phosphates and application as gel copolymer electrolytes for lithium ion batteries with high flame-retardancy , 2020 .

[56]  Baohua Li,et al.  Deep‐Eutectic‐Solvent‐Based Self‐Healing Polymer Electrolyte for Safe and Long‐Life Lithium‐Metal Batteries , 2020, Angewandte Chemie.

[57]  Cheng Li,et al.  Reinforcing concentrated phosphate electrolytes with in-situ polymerized skeletons for robust quasi-solid lithium metal batteries , 2020 .

[58]  Jian-jun Zhang,et al.  Review—In Situ Polymerization for Integration and Interfacial Protection Towards Solid State Lithium Batteries , 2020, Journal of The Electrochemical Society.

[59]  Baohua Li,et al.  Deep Eutectic Solvent-Based Self-Healing Polymer Electrolyte for Safe and Long-Life Lithium Metal Batteries. , 2020, Angewandte Chemie.

[60]  Elie Paillard,et al.  In situ crosslinked PMMA gel electrolyte from a low viscosity precursor solution for cost-effective, long lasting and sustainable lithium-ion batteries , 2020 .

[61]  Liyi Shi,et al.  Nanocoating inside porous PE separator enables enhanced ionic transport of GPE and stable cycling of Li-metal anode , 2019, Research on Chemical Intermediates.

[62]  Xiaolong Li,et al.  Internal in situ gel polymer electrolytes for high-performance quasi-solid-state lithium ion batteries , 2019, Journal of Solid State Electrochemistry.

[63]  Xiu-li Wang,et al.  Poly(ionic liquid)‐Based Hybrid Hierarchical Free‐Standing Electrolytes with Enhanced Ion Transport and Fire Retardancy Towards Long‐Cycle‐Life and Safe Lithium Batteries , 2019, ChemElectroChem.

[64]  Hung-Ju Yen,et al.  Strategic Structural Design of a Gel Polymer Electrolyte toward a High Efficiency Lithium-Ion Battery , 2019, ACS Applied Energy Materials.

[65]  Qing Zhao,et al.  Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries , 2019, Nature Energy.

[66]  Congju Li,et al.  Long cycling, thermal stable, dendrites free gel polymer electrolyte for flexible lithium metal batteries , 2019, Electrochimica Acta.

[67]  Ruifeng Xu,et al.  Facile interfacial modification via in-situ ultraviolet solidified gel polymer electrolyte for high-performance solid-state lithium ion batteries , 2019, Journal of Power Sources.

[68]  Xizheng Liu,et al.  Flexible Lithium-Air Battery in Ambient Air with an In Situ Formed Gel Electrolyte. , 2018, Angewandte Chemie.

[69]  Xizheng Liu,et al.  Flexible Lithium–Air Battery in Ambient Air with an In Situ Formed Gel Electrolyte , 2018, Angewandte Chemie.

[70]  Hyun‐Kon Song,et al.  Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems , 2018, Advanced materials.

[71]  Yu-Guo Guo,et al.  Upgrading traditional liquid electrolyte via in situ gelation for future lithium metal batteries , 2018, Science Advances.

[72]  Nianwu Li,et al.  A Dual‐Salt Gel Polymer Electrolyte with 3D Cross‐Linked Polymer Network for Dendrite‐Free Lithium Metal Batteries , 2018, Advanced science.

[73]  Hongtao Qu,et al.  Stable cycling of lithium-sulfur battery enabled by a reliable gel polymer electrolyte rich in ester groups , 2018 .

[74]  Huisheng Peng,et al.  A Lithium-Air Battery Stably Working at High Temperature with High Rate Performance. , 2017, Small.

[75]  Bingbing Chen,et al.  Two Players Make a Formidable Combination: In Situ Generated Poly(acrylic anhydride-2-methyl-acrylic acid-2-oxirane-ethyl ester-methyl methacrylate) Cross-Linking Gel Polymer Electrolyte toward 5 V High-Voltage Batteries. , 2017, ACS applied materials & interfaces.

[76]  Xingguo Qi,et al.  In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries , 2017 .

[77]  Arumugam Manthiram,et al.  Lithium battery chemistries enabled by solid-state electrolytes , 2017 .

[78]  T. Zhao,et al.  A Highly-Safe Lithium-Ion Sulfur Polymer Battery with SnO 2 Anode and Acrylate-Based Gel Polymer Electrolyte , 2016 .

[79]  Dong Zhou,et al.  In-situ Fabrication of a Freestanding Acrylate-based Hierarchical Electrolyte for Lithium-sulfur Batteries , 2016 .

[80]  Lynden A. Archer,et al.  Design principles for electrolytes and interfaces for stable lithium-metal batteries , 2016, Nature Energy.

[81]  Jürgen Janek,et al.  A solid future for battery development , 2016, Nature Energy.

[82]  Ming Liu,et al.  SiO2 Hollow Nanosphere‐Based Composite Solid Electrolyte for Lithium Metal Batteries to Suppress Lithium Dendrite Growth and Enhance Cycle Life , 2016 .

[83]  Ming Liu,et al.  Novel gel polymer electrolyte for high- performance lithium-sulfur batteries , 2016 .

[84]  Ming Liu,et al.  In Situ Synthesis of a Hierarchical All‐Solid‐State Electrolyte Based on Nitrile Materials for High‐Performance Lithium‐Ion Batteries , 2015 .

[85]  Yufen Zhao,et al.  Cross-linking copolymers of acrylates’ gel electrolytes with high conductivity for lithium-ion batteries , 2014, Journal of Solid State Electrochemistry.

[86]  Dong‐Won Kim,et al.  Cycling performance of lithium-ion polymer batteries assembled using in-situ chemical cross-linking without a free radical initiator , 2014 .

[87]  Dong‐Won Kim,et al.  Cycling performance of lithium polymer cells assembled by in situ polymerization of a non-flammable ionic liquid monomer , 2013 .

[88]  Hyun‐Kon Song,et al.  A physical organogel electrolyte: characterized by in situ thermo-irreversible gelation and single-ion-predominent conduction , 2013, Scientific Reports.

[89]  G. Meligrana,et al.  New electrolyte membranes for Li-based cells: Methacrylic polymers encompassing pyrrolidinium-based ionic liquid by single step photo-polymerisation , 2012 .

[90]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[91]  J. Yu,et al.  In situ formation of poly(butyl acrylate)-based non-flammable elastic quasi-solid electrolyte for dendrite-free flexible lithium metal batteries with long cycle life for wearable devices , 2021 .

[92]  Jia-lin Sun,et al.  Polyvinyl formal based gel polymer electrolyte prepared using initiator free in-situ thermal polymerization method , 2014 .

[93]  Xiao‐Guang Sun,et al.  Crosslinked gel polymer electrolytes based on polyethylene glycol methacrylate and ionic liquid for lithium ion battery applications , 2013 .

[94]  Dong‐Won Kim,et al.  Lithium polymer batteries assembled with in situ cross-linked gel polymer electrolytes containing ionic liquid , 2012, Macromolecular Research.

[95]  Jiulin Wang,et al.  A new flame-retardant polymer electrolyte with enhanced Li-ion conductivity for safe lithium-sulfur batteries , 2022 .