Electronic correlation and geometrical frustration in molecular solids: A systematic ab initio study of β′−X[Pd(dmit)2]2

We systematically derive low-energy effective Hamiltonians for molecular solids $\beta^\prime$-$X$[Pd(dmit)$_{2}$]$_{2}$ ($X$ represents a cation) using ab initio density functional theory calculations and clarify how the cation controls the inter-dimer transfer integrals and the interaction parameters. The effective models are solved using the exact diagonalization method and the antiferromagnetic ordered moment is shown to be significantly suppressed around the spin-liquid candidate of $X$=EtMe$_{3}$Sb, which is reported in experiments. We also show that both the geometrical frustration and the off-site interactions play essential roles in the suppression of antiferromagnetic ordering. This systematic derivation and analysis of the low-energy effective Hamiltonians offer a firm basis to clarify the nature of the quantum spin liquid found in $\beta^\prime$-EtMe$_{3}$Sb[Pd(dmit)$_{2}$]$_{2}$.

[1]  小谷 正雄 日本物理学会誌及びJournal of the Physical Society of Japanの月刊について , 1955 .

[2]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[3]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[4]  Philip W. Anderson,et al.  Resonating valence bonds: A new kind of insulator? , 1973 .

[5]  Philip W. Anderson,et al.  On the ground state properties of the anisotropic triangular antiferromagnet , 1974 .

[6]  Dagotto,et al.  Exact diagonalization study of the frustrated Heisenberg model: A new disordered phase. , 1989, Physical review. B, Condensed matter.

[7]  Dagotto,et al.  Static and dynamical correlations in a spin-1/2 frustrated antiferromagnet. , 1991, Physical review. B, Condensed matter.

[8]  H. Fukuyama,et al.  Phase Diagram of Two-Dimensional Organic Conductors: (BEDT-TTF) 2X , 1996 .

[9]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[10]  Masaaki Nakamura Mechanism of CDW-SDW Transition in One Dimension , 1999, cond-mat/9903227.

[11]  Masaaki Nakamura Tricritical behavior in the extended Hubbard chains , 1999, cond-mat/9909277.

[12]  Masatoshi Imada,et al.  Nonmagnetic Insulating States near the Mott Transitions on Lattices with Geometrical Frustration and Implications for κ-(ET)2Cu2(CN)3 , 2002, cond-mat/0203020.

[13]  R. Kato,et al.  Magnetic susceptibility of β′-[Pd(dmit)2] salts (dmit = 1, 3-dithiol-2-thione-4, 5-dithiolate, C3S5): evidence for frustration in spin-1/2 Heisenberg antiferromagnets on a triangular lattice , 2002 .

[14]  T. Miyazaki,et al.  First-principles study of pressure effects on the molecular solids(CH3)4X[M(dmit)2]2(X=N,PandM=Ni,Pd) , 2003 .

[15]  Y. Shimizu,et al.  Spin liquid state in an organic Mott insulator with a triangular lattice. , 2003, Physical review letters.

[16]  R. Kato Conducting metal dithiolene complexes: structural and electronic properties. , 2004, Chemical reviews.

[17]  A. I. Lichtenstein,et al.  Frequency-dependent local interactions and low-energy effective models from electronic structure calculations , 2004 .

[18]  A. Nakao,et al.  Structural Study of Low Temperature Charge-Separated Phases of Pd(dmit)2-Based Molecular Conductors , 2005 .

[19]  Claudius Gros,et al.  Spin-liquid and magnetic phases in the anisotropic triangular lattice: The case of κ − ( ET ) 2 X , 2009, 0906.2288.

[20]  F. Mila,et al.  Effective spin model for the spin-liquid phase of the Hubbard model on the triangular lattice. , 2010, Physical review letters.

[21]  Masatoshi Imada,et al.  Magnetic Properties of Ab initio Model of Iron-Based Superconductors LaFeAsO , 2010, 1006.4812.

[22]  L. Balents Spin liquids in frustrated magnets , 2010, Nature.

[23]  S. Maegawa,et al.  Instability of a quantum spin liquid in an organic triangular-lattice antiferromagnet , 2010 .

[24]  Yuji Matsuda,et al.  Highly Mobile Gapless Excitations in a Two-Dimensional Candidate Quantum Spin Liquid , 2010, Science.

[25]  Fujio Izumi,et al.  VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data , 2011 .

[26]  R. Kato,et al.  Mott Physics in Organic Conductors with Triangular Lattices , 2011 .

[27]  Ross H. McKenzie,et al.  Quantum frustration in organic Mott insulators: from spin liquids to unconventional superconductors , 2010, 1007.5381.

[28]  R. Kato,et al.  Cation Dependence of Crystal Structure and Band Parameters in a Series of Molecular Conductors, β'-(Cation)[Pd(dmit)2]2 (dmit = 1,3-dithiole-2-thione-4,5-dithiolate) , 2012 .

[29]  B. Powell,et al.  Geometrical frustration in the spin liquid β'-Me3EtSb[Pd(dmit)2]2 and the valence-bond solid Me3EtP[Pd(dmit)2]2. , 2011, Physical review letters.

[30]  Masatoshi Imada,et al.  Ab initio two-dimensional multiband low-energy models of EtMe 3 Sb[Pd(dmit) 2 ] 2 and κ-(BEDT-TTF) 2 Cu(NCS) 2 with comparisons to single-band models , 2012, 1208.3954.

[31]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.

[32]  R. Valentí,et al.  Importance of anisotropy in the spin-liquid candidate Me$_3$EtSb[Pd(dmit)$_2$]$_2$ , 2013, 1308.4507.

[33]  T. Miyazaki,et al.  Cation Dependence of the Electronic States in Molecular Triangular Lattice System β′-X[Pd(dmit)2]2: A First-Principles Study , 2013, 1302.0477.

[34]  H. Fukuyama,et al.  Electronic States of Single-Component Molecular Conductors [M(tmdt)2] , 2013, 1301.1116.

[35]  H. Mori,et al.  Gapless quantum spin liquid in an organic spin-1/2 triangular-lattice κ-H3(Cat-EDT-TTF)2. , 2014, Physical review letters.

[36]  T. Miyazaki,et al.  Fragment Model Study of Molecular Multiorbital System X[Pd(dmit) 2 ] 2 , 2014, 1412.6369.

[37]  M. Troyer,et al.  Accuracy of downfolding based on the constrained random-phase approximation , 2014, 1410.1276.

[38]  F. Becca Quantum Monte Carlo Approaches for Correlated Systems , 2017 .

[39]  Stefano de Gironcoli,et al.  Advanced capabilities for materials modelling with Quantum ESPRESSO , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  Yi Zhou,et al.  Quantum spin liquid states , 2016, 1607.03228.

[41]  Naoki Kawashima,et al.  Quantum lattice model solver HΦ , 2017, Comput. Phys. Commun..

[42]  L. Balents,et al.  Quantum spin liquids: a review , 2016, Reports on progress in physics. Physical Society.

[43]  M. Zaletel,et al.  Chiral Spin Liquid Phase of the Triangular Lattice Hubbard Model: A Density Matrix Renormalization Group Study , 2018, Physical Review X.

[44]  P. Werner,et al.  Limitations of constrained random phase approximation downfolding , 2018, Physical Review B.

[45]  J. Schlueter,et al.  Quantum spin liquids unveil the genuine Mott state , 2017, Nature Materials.

[46]  K. Ueda,et al.  Temperature Dependence of Crystal Structures and Band Parameters in Quantum Spin Liquid β′-EtMe3Sb[Pd(dmit)2]2 and Related Materials , 2018 .

[47]  Satoshi Morita,et al.  mVMC - Open-source software for many-variable variational Monte Carlo method , 2017, Comput. Phys. Commun..

[48]  L. Taillefer,et al.  Thermal Conductivity of the Quantum Spin Liquid Candidate EtMe3Sb[Pd(dmit)2]2 : No Evidence of Mobile Gapless Excitations , 2019, Physical Review X.

[49]  Boundary-limited and Glassy-like Phonon Thermal Conduction in EtMe3Sb[Pd(dmit)2]2 , 2019, Journal of the Physical Society of Japan.

[50]  R. Kato,et al.  Absence of Magnetic Thermal Conductivity in the Quantum Spin Liquid Candidate EtMe_{3}Sb[Pd(dmit)_{2}]_{2}. , 2019, Physical review letters.

[51]  Presence and absence of itinerant gapless excitations in the quantum spin liquid candidate EtMe3Sb[Pd(dmit)2]2 , 2020, Physical Review B.

[52]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[53]  Chem. , 2020, Catalysis from A to Z.

[54]  B. Powell,et al.  Frustration, ring exchange, and the absence of long-range order in EtMe3Sb[Pd(dmit)2]2 : From first principles to many-body theory , 2019, Physical Review Materials.

[55]  P. Alam ‘T’ , 2021, Composites Engineering: An A–Z Guide.

[56]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[57]  P. Alam ‘S’ , 2021, Composites Engineering: An A–Z Guide.

[58]  P. Alam,et al.  R , 1823, The Herodotus Encyclopedia.