Optical Properties and Plasmonic Performance of Titanium Nitride

Titanium nitride (TiN) is one of the most well-established engineering materials nowadays. TiN can overcome most of the drawbacks of palsmonic metals due to its high electron conductivity and mobility, high melting point and due to the compatibility of its growth with Complementary Metal Oxide Semiconductor (CMOS) technology. In this work, we review the dielectric function spectra of TiN and we evaluate the plasmonic performance of TiN by calculating (i) the Surface Plasmon Polariton (SPP) dispersion relations and (ii) the Localized Surface Plasmon Resonance (LSPR) band of TiN nanoparticles, and we demonstrate a significant plasmonic performance of TiN.

[1]  Kamil Postava,et al.  Optical characterization of TiN/SiO2(1000 nm)/Si system by spectroscopic ellipsometry and reflectometry , 2001 .

[2]  G. Kamarinos,et al.  Characteristics of TiNx/n-Si Schottky diodes deposited by reactive magnetron sputtering , 1999 .

[3]  D. Cahill,et al.  Morphology of epitaxial TiN(001) grown by magnetron sputtering , 1997 .

[4]  C. Mitterer,et al.  Investigations on the effects of plasma-assisted pre-treatment for plasma-assisted chemical vapour deposition TiN coatings on tool steel , 2004 .

[5]  W. Barnes,et al.  Surface plasmon subwavelength optics , 2003, Nature.

[6]  Yunuen Montelongo,et al.  Plasmonic nanoparticle scattering for color holograms , 2014, Proceedings of the National Academy of Sciences.

[7]  Mikael Östling,et al.  A comparative study of the diffusion barrier properties of TiN and ZrN , 1986 .

[8]  D. Depla,et al.  Reactive sputter deposition of TiN layers: modelling the growth by characterization of particle fluxes towards the substrate , 2009 .

[9]  C. Mitterer,et al.  The influence of the ion bombardment on the optical properties of TiNx and ZrNx coatings , 1998 .

[10]  E. Budke,et al.  Decorative hard coatings with improved corrosion resistance , 1999 .

[11]  B. Rauschenbach Formation of compounds by high-flux nitrogen ion implantation in titanium , 1986 .

[12]  M. Leskelä,et al.  Nitrides of titanium, niobium, tantalum and molybdenum grown as thin films by the atomic layer epitaxy method☆ , 1988 .

[13]  Igor Zorić,et al.  Nanoplasmonic Probes of Catalytic Reactions , 2009, Science.

[14]  A. Pelton,et al.  Low temperature tempering-induced changes in bulk resistivity, temperature coefficient of resistivity and stress in physically vapor-deposited TiN , 1988 .

[15]  Grigorios Matenoglou,et al.  Conducting transition metal nitride thin films with tailored cell sizes: The case of δ-TixTa1−xN , 2008 .

[16]  A. Kildishev,et al.  Refractory Plasmonics with Titanium Nitride: Broadband Metamaterial Absorber , 2014, Advanced materials.

[17]  Nicolas Bonod,et al.  Plasmonics : from basics to advanced topics , 2012 .

[18]  B. Rauschenbach,et al.  Microstructural investigations on titanium nitride films formed by medium energy ion beam assisted deposition , 1993 .

[19]  J. Narayan,et al.  Epitaxial growth of TaN thin films on Si(100) and Si(111) using a TiN buffer layer , 2002 .

[20]  D. Roessler,et al.  Kramers-Kronig analysis of reflection data , 1965 .

[21]  Lon A. Wang,et al.  One-shot deep-UV pulsed-laser-induced photomodification of hollow metal nanoparticles for high-density data storage on flexible substrates. , 2010, ACS nano.

[22]  H. Holleck Material selection for hard coatings , 1986 .

[23]  Jun Wang,et al.  Plasmon resonant excitation in grating-gated AlN barrier transistors at terahertz frequency , 2012 .

[24]  R. Kužel,et al.  Ion-assisted sputtering of TiN films , 1990 .

[25]  C. Charitidis,et al.  Electronic properties of binary and ternary, hard and refractory transition metal nitrides , 2010 .

[26]  J. Damiano,et al.  Size Effects on the Melting Temperature of Silver Nanoparticles: In-Situ TEM Observations , 2009, Microscopy and Microanalysis.

[27]  S. Aouadi,et al.  Real-time Spectroscopic Ellipsometry Study of Ultrathin Diffusion Barriers for Integrated Circuits , 2004 .

[28]  A. Perry,et al.  The chemical analysis of TiN films: A round robin experiment , 1987 .

[29]  Mark L Brongersma,et al.  Hot-electron photodetection with a plasmonic nanostripe antenna. , 2014, Nano letters.

[30]  Wei Chen,et al.  Plasmonic enhancement of photocurrent in MoS2 field-effect-transistor , 2013 .

[31]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[32]  M. Wong,et al.  Preparation and characterization of AlN/ZrN and AlN/TiN nanolaminate coatings , 2000 .

[33]  B. Mishra,et al.  Variation of color in titanium and zirconium nitride decorative thin films , 2002 .

[34]  A. Perry A contribution to the study of poisson's ratios and elasticconstants of TiN, ZrN and HfN , 1990 .

[35]  S. Mändl,et al.  Optical characterization of TiN produced by metal-plasma immersion ion implantation , 2001 .

[36]  R. Ningthoujam,et al.  Synthesis, electron transport properties of transition metal nitrides and applications , 2015 .

[37]  Suhuai Wei,et al.  Band structure and fundamental optical transitions in wurtzite AlN , 2003 .

[38]  R. Vispute,et al.  Characteristics of titanium nitride films grown by pulsed laser deposition , 1996 .

[39]  Sbs Stephan Heil,et al.  In situ spectroscopic ellipsometry as a versatile tool for studying atomic layer deposition , 2009 .

[40]  J. Toudert,et al.  Selective Dichroic Patterning by Nanosecond Laser Treatment of Ag Nanostripes , 2011, Advanced materials.

[41]  R. V. Van Duyne,et al.  Molecular Plasmonics , 2004, Science.

[42]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[43]  S. Lau,et al.  Substrate bias dependence of Raman spectra for TiN films deposited by filtered cathodic vacuum arc , 2002 .

[44]  F. Mei,et al.  Coherent growth and superhardness effect of AlN/TiN nanomultilayers , 2004 .

[45]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[46]  S. Y. Teo,et al.  The effect of deposition conditions on the properties of TiN thin films prepared by filtered cathodic vacuum-arc technique , 1999 .

[47]  Grigorios Matenoglou,et al.  Plasma energy and work function of conducting transition metal nitrides for electronic applications , 2009 .

[48]  I. Petrov,et al.  Microstructure modification of TiN by ion bombardment during reactive sputter deposition , 1989 .

[49]  Jean-Jacques Greffet,et al.  Plasmonics: From Basics to Advanced Topics , 2012 .

[50]  I. Petrov,et al.  Epitaxial Sc1−xTixN(001): Optical and electronic transport properties , 2001 .

[51]  Harry A. Atwater,et al.  Low-Loss Plasmonic Metamaterials , 2011, Science.

[52]  Harry A Atwater,et al.  Design of nanostructured solar cells using coupled optical and electrical modeling. , 2012, Nano letters.

[53]  K. Witt,et al.  Evaluation of optical properties of decorative coatings by spectroscopic ellipsometry , 1992 .

[54]  M. Fox Optical Properties of Solids , 2010 .

[55]  I. Petrov,et al.  Growth, surface morphology, and electrical resistivity of fully strained substoichiometric epitaxial TiNx (0.67⩽x<1.0) layers on MgO(001) , 2004 .

[56]  N. Rorsman,et al.  Combined TiN- and TaN temperature compensated thin film resistors , 2012 .

[57]  R. Sanjinés,et al.  Relative orientation of the constituents on the degree of crystallographic coherence in AlN/TiN superlattices , 2006 .

[58]  R. Kužel,et al.  Complex XRD microstructural studies of hard coatings applied to PVD-deposited TiN films Part II. Transition from porous to compact films and microstructural inhomogeneity of the layers , 1995 .

[59]  B. O. Seraphin,et al.  Optical properties of CVD-coated TiN, ZrN and HfN , 1982 .

[60]  Grigorios Matenoglou,et al.  Structure, electronic properties and electron energy loss spectra of transition metal nitride films , 2013 .

[61]  Emmanuel Kymakis,et al.  Nanoparticle-based plasmonic organic photovoltaic devices , 2013 .

[62]  R. Wolters,et al.  On the difference between optically and electrically determined resistivity of ultra-thin titanium nitride films , 2013 .

[63]  Marco Lazzarino,et al.  Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons. , 2010, Nature Nanotechnology.

[64]  Qiaoqiang Gan,et al.  Plasmonic‐Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier , 2013, Advanced materials.

[65]  Xiaoming Xie,et al.  H‐Doped Black Titania with Very High Solar Absorption and Excellent Photocatalysis Enhanced by Localized Surface Plasmon Resonance , 2013 .

[66]  J. Humlíček,et al.  Ellipsometry and transport studies of thin-film metal nitrides , 1998 .

[67]  S. Logothetidis,et al.  Surface kinetics and subplantation phenomena affecting the texture, morphology, stress, and growth evolution of titanium nitride films , 2004 .

[68]  Pierre Berini,et al.  Surface plasmon–polariton amplifiers and lasers , 2011, Nature Photonics.

[69]  W. Williams,et al.  Transition metal carbides, nitrides, and borides for electronic applications , 1997 .

[70]  Enric Bertran,et al.  Surface reflectivity of TiN thin films measured by spectral ellipsometry , 1991 .

[71]  G. V. Chester,et al.  Solid State Physics , 2000 .

[72]  Harry A Atwater,et al.  PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. , 2009, Nano letters.

[73]  W. Sproul,et al.  Synthesis and characterization of highly textured polycrystalline AlN/TiN superlattice coatings , 1998 .

[74]  Xi Wang,et al.  Deposition and modification of titanium nitride by ion assisted arc deposition , 1995 .

[75]  K. H. Jolliffee Optical properties of thin solid films , 1954 .

[76]  W. Sproul,et al.  The effect of target power on the nitrogen partial pressure level and hardness of reactively sputtered titanium nitride coatings , 1989 .

[77]  M. Brik,et al.  First-principles studies of the electronic and elastic properties of metal nitrides XN (X = Sc, Ti, V, Cr, Zr, Nb) , 2012 .

[78]  A. Perry,et al.  Variations in the reflectance of TiN, ZrN and HfN , 1988 .

[79]  C. Stampfl,et al.  Electronic structure and physical properties of early transition metal mononitrides: Density-functional theory LDA, GGA, and screened-exchange LDA FLAPW calculations , 2001 .

[80]  Y. Zhou,et al.  Determination of Complete Melting and Surface Premelting Points of Silver Nanoparticles by Molecular Dynamics Simulation , 2013 .

[81]  L. Hultman,et al.  Microstructures of TiN films grown by various physical vapour deposition techniques , 1991 .

[82]  Johansson,et al.  Optical properties of the group-IVB refractory metal compounds. , 1996, Physical review. B, Condensed matter.

[83]  Peter Nordlander,et al.  Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device , 2013, Nature Communications.

[84]  Y. Tse,et al.  Diffraction stress analysis in fiber-textured TiN thin films grown by ion-beam sputtering: Application to (001) and mixed (001)+(111) texture , 2004 .

[85]  V. Poulek,et al.  Relation of deposition conditions of Ti-N films prepared by d.c. magnetron sputtering to their microstructure and macrostress , 1993 .

[86]  K. Choi,et al.  A systematic study of the influence of nitrogen in tuning the effective work function of nitrided metal gates , 2005, IEEE VLSI-TSA International Symposium on VLSI Technology, 2005. (VLSI-TSA-Tech)..

[87]  R. Kužel,et al.  Complex XRD microstructural studies of hard coatings applied to PVD-deposited TiN films Part I. Problems and methods , 1994 .

[88]  Songyou Wang,et al.  Optical properties of cubic Ti3N4, Zr3N4, and Hf3N4 , 2006 .

[89]  Y. Shimogaki,et al.  TiN Films Prepared by Flow Modulation Chemical Vapor Deposition using TiCl4 and NH3 , 2001 .

[90]  D. Mckenzie,et al.  Production of dense and oriented structures including titanium nitride by energetic condensation from plasmas , 1996 .

[91]  H. Randhawa Hard coatings for decorative applications , 1988 .

[92]  R. A. Matula Electrical resistivity of copper, gold, palladium, and silver , 1979 .

[93]  C. Charitidis,et al.  Combined electrical and mechanical properties of titanium nitride thin films as metallization materials , 1999 .

[94]  L. Hultman,et al.  Growth of epitaxial TiN films deposited on MgO(100) by reactive magnetron sputtering: The role of low-energy ion irradiation during deposition , 1988 .

[95]  T. Seong,et al.  Effects of annealing on the microstructures and mechanical properties of TiN/AlN nano-multilayer films prepared by ion-beam assisted deposition , 2002 .

[96]  I. Petrova,et al.  Microstructural evolution during film growth , 2003 .

[97]  A. P. Chernyshev Effect of nanoparticle size on the onset temperature of surface melting , 2009 .

[98]  Andrew J. Wilson,et al.  Molecular Plasmonics. , 2016, Annual review of analytical chemistry.

[99]  C. Wiemer,et al.  Determination of chemical composition and its relationship with optical properties of Ti-N and Ti-V-N sputtered thin films , 1994 .

[100]  T. Nomura,et al.  Formation of cubic-A1N in TiN/A1N superlattice , 1996 .

[101]  M. Engelhard,et al.  Surface plasmon-driven water reduction: gold nanoparticle size matters. , 2014, Journal of the American Chemical Society.

[102]  Y. Tse,et al.  Interdependence between stress, preferred orientation, and surface morphology of nanocrystalline TiN thin films deposited by dual ion beam sputtering , 2006 .

[103]  G. Konstantatos,et al.  Molecular interfaces for plasmonic hot electron photovoltaics. , 2015, Nanoscale.

[104]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[105]  Stergios Logothetidis,et al.  Optical, electronic, and transport properties of nanocrystalline titanium nitride thin films , 2001 .

[106]  G. Vourlias,et al.  Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering , 2015, Nanotechnology.

[107]  V. Kravets,et al.  Singular phase nano-optics in plasmonic metamaterials for label-free single-molecule detection. , 2013, Nature materials.

[108]  LETTER TO THE EDITOR: Microhardness of Ti-N films containing the epsilon -Ti2N phase , 1988 .

[109]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[110]  P. Komninou,et al.  Optical and electrical properties of TiN/n-GaN contacts in correlation with their structural properties , 2003 .

[111]  Y. Ikuhara,et al.  Initial growth stage of nanoscaled TiN films: Formation of continuous amorphous layers and thickness-dependent crystal nucleation , 2003 .

[112]  I. Alexandrou,et al.  In situ spectroscopic ellipsometry to monitor the process of TiNx thin films deposited by reactive sputtering , 1995 .

[113]  Jing Liu,et al.  Epitaxial superlattices with titanium nitride as a plasmonic component for optical hyperbolic metamaterials , 2014, Proceedings of the National Academy of Sciences.

[114]  J. Narayan,et al.  Effect of substrate temperature on the microstructural properties of titanium nitride nanowires grown by pulsed laser deposition , 2014 .

[115]  W. Sproul,et al.  High rate reactive sputtering in an opposed cathode closed-field unbalanced magnetron sputtering system , 1990 .

[116]  J. L. Yang,et al.  Chemical mapping of a single molecule by plasmon-enhanced Raman scattering , 2013, Nature.

[117]  F. Lévy,et al.  Enhanced sputtering of titanium oxide, nitride and oxynitride thin films by the reactive gas pulsing technique , 2001 .

[118]  F. Huet,et al.  The Microstructure of Ti/Al and TiN Ohmic Contacts to Gallium Nitride , 1999 .

[119]  E. Gornik,et al.  Excitation of surface plasmons on titanium nitride films : determination of the dielectric function , 1994 .

[120]  H. Atwater,et al.  Plasmoelectric potentials in metal nanostructures , 2014, Science.

[121]  P. Martin,et al.  Characterization of the Optical Properties and Composition of TiNx Thin Films by Spectroscopic Ellipsometry and X‐ray Photoelectron Spectroscopy , 1996 .

[122]  Bo Zhang,et al.  A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes , 2014, Nature Medicine.

[123]  E. Janzén,et al.  Growth and electronic properties of epitaxial TiN thin films on 3C-SiC(001) and 6H-SiC(0001) substrates by reactive magnetron sputtering , 1996 .

[124]  A. Polman,et al.  Plasmonics Applied , 2008, Science.

[125]  Peter Nordlander,et al.  Vivid, full-color aluminum plasmonic pixels , 2014, Proceedings of the National Academy of Sciences.

[126]  G. Konstantatos,et al.  Nanostructured materials for photon detection. , 2010, Nature nanotechnology.

[127]  Structure and electronic properties of conducting, ternary TixTa1−xN films , 2009 .

[128]  R. Pecenka,et al.  Structural, compositional, optical and colorimetric characterization of TiN-nanoparticles , 2004 .

[129]  Jeffrey N. Anker,et al.  Biosensing with plasmonic nanosensors. , 2008, Nature materials.

[130]  S. Kodambaka,et al.  Pathways of atomistic processes on TiN(001) and (111) surfaces during film growth: An ab initio study , 2003 .

[131]  Stergios Logothetidis,et al.  The effect of substrate temperature and biasing on the mechanical properties and structure of sputtered titanium nitride thin films , 2000 .

[132]  M. Cortie,et al.  Optical properties and plasmon resonances of titanium nitride nanostructures , 2010, Nanotechnology.

[133]  G. Abadias,et al.  In situ stress evolution during magnetron sputtering of transition metal nitride thin films , 2008 .

[134]  T. Alford,et al.  Effectiveness of Ti, TiN, Ta, TaN, and W2N as barriers for the integration of low-k dielectric hydrogen silsesquioxane , 2000 .

[135]  Alexandra Boltasseva,et al.  Oxides and nitrides as alternative plasmonic materials in the optical range [Invited] , 2011 .

[136]  E. Ozbay Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions , 2006, Science.

[137]  J. Pendry,et al.  Plasmonic light-harvesting devices over the whole visible spectrum. , 2010, Nano letters.

[138]  G. Pavelescu,et al.  Influence of deposition parameters on optical properties of titanium nitride thin films , 1995, Other Conferences.

[139]  Peter Kroll,et al.  Hafnium nitride with thorium phosphide structure: physical properties and an assessment of the Hf-N, Zr-N, and Ti-N phase diagrams at high pressures and temperatures. , 2003, Physical review letters.

[140]  W. Münz,et al.  Structure and properties of high power impulse magnetron sputtering and DC magnetron sputtering CrN and TiN films deposited in an industrial scale unit , 2010 .

[141]  Shanhui Fan,et al.  Optimization of non-periodic plasmonic light-trapping layers for thin-film solar cells , 2013, Nature Communications.

[142]  M. Evstigneev,et al.  Room-temperature fabrication of hard AlN/TiN superlattice coatings by pulsed laser deposition , 2002 .

[143]  N. Halas,et al.  Nano-optics from sensing to waveguiding , 2007 .

[144]  Eugene A. Irene,et al.  Handbook of Ellipsometry , 2005 .

[145]  T. J. Yang,et al.  An optimal quasisuperlattice design to further improve thermal stability of tantalum nitride diffusion barriers , 2000 .

[146]  C. Mitterer,et al.  The effect of deposition temperature on microstructure and properties of thermal CVD TiN coatings , 2008 .

[147]  Eric Eisenbraun,et al.  Ultrathin Diffusion Barriers/Liners for Gigascale Copper Metallization , 2000 .

[148]  Nasrat A. Raouf,et al.  Optical and electrical properties of reactively sputtered TiN, ZrN, and HfN thin films , 1994, Optics & Photonics.

[149]  S. Logothetidis,et al.  Interface properties and structural evolution of TiN/Si and TiN/GaN heterostructures , 2003 .

[150]  S. Vepřek SURFACE PROCESSES AND RATE-DETERMINING STEPS IN PLASMA-INDUCED CHEMICAL VAPOUR DEPOSITION: TITANIUM NITRIDE, BORON CARBIDE AND SILICON , 1990 .

[151]  A. Kildishev,et al.  Titanium nitride as a plasmonic material for visible and near-infrared wavelengths , 2012 .

[152]  M. Ritala,et al.  Atomic Layer Epitaxy Growth of TiN Thin Films from Til4 and NH 3 , 1998 .

[153]  Martin Moskovits,et al.  An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. , 2013, Nature nanotechnology.

[154]  Panagiotis Karagiannidis,et al.  Plasmonic silver nanoparticles for improved organic solar cells , 2012 .

[155]  Optical encoding by plasmon-based patterning: hard and inorganic materials become photosensitive. , 2012, Nano letters.

[156]  Min Gu,et al.  Five-dimensional optical recording mediated by surface plasmons in gold nanorods , 2009, Nature.

[157]  Christian Mitterer,et al.  A comparative study on reactive and non-reactive unbalanced magnetron sputter deposition of TiN coatings , 2002 .