A geochemical approach to reconstruct modern dust fluxes and sources to the South Pacific

[1]  B. Bostick,et al.  Highly bioavailable dust-borne iron delivered to the Southern Ocean during glacial periods , 2018, Proceedings of the National Academy of Sciences.

[2]  G. Baccolo,et al.  Causes of dust size variability in central East Antarctica (Dome B):Atmospheric transport from expanded South American sources during Marine Isotope Stage 2 , 2017 .

[3]  S. Goldstein,et al.  Glacial/interglacial changes of Southern Hemisphere wind circulation from the geochemistry of South American dust , 2017 .

[4]  B. Bostick,et al.  High particulate iron(II) content in glacially sourced dusts enhances productivity of a model diatom , 2017, Science Advances.

[5]  G. Mollenhauer,et al.  A biomarker perspective on dust, productivity, and sea surface temperature in the Pacific sector of the Southern Ocean , 2017 .

[6]  F. Lamy The Expedition PS97 of the Research Vessel POLARSTERN to the Drake Passage in 2016 , 2016 .

[7]  R. Gersonde,et al.  Last Glacial Maximum sea surface temperature and sea-ice extent in the Pacific sector of the Southern Ocean , 2016 .

[8]  N. Mahowald,et al.  Potentially Bioavailable Iron Delivery by Iceberg-hosted Sediments and Atmospheric Dust to the Polar Oceans , 2016 .

[9]  B. Delmonte,et al.  A Sr-Nd-Hf isotope characterization of dust source areas in Victoria Land and the McMurdo Sound sector of Antarctica , 2016 .

[10]  S. Goldstein,et al.  Provenance of dust to Antarctica: A lead isotopic perspective , 2016 .

[11]  S. Goldstein,et al.  High Precision Sr‐Nd‐Hf‐Pb Isotopic Compositions of USGS Reference Material BCR‐2 , 2016 .

[12]  J. Adkins,et al.  Neodymium isotope analyses after combined extraction of actinide and lanthanide elements from seawater and deep‐sea coral aragonite , 2016 .

[13]  N. Bertler,et al.  Trajectory modeling of modern dust transport to the Southern Ocean and Antarctica , 2015 .

[14]  G. Haug,et al.  Iron Fertilization of the Subantarctic Ocean During the Last Ice Age , 2014, Science.

[15]  S. Galer,et al.  Lead isotopes in the Eastern Equatorial Pacific record Quaternary migration of the South Westerlies , 2014 .

[16]  G. Kuhn,et al.  Increased Dust Deposition in the Pacific Southern Ocean During Glacial Periods , 2014, Science.

[17]  R. Edwards,et al.  Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry , 2013 .

[18]  N. Mahowald,et al.  Improved dust representation in the Community Atmosphere Model , 2012 .

[19]  Ming Zhao,et al.  Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products , 2012 .

[20]  Jean Tournadre,et al.  Antarctic icebergs distributions, 2002–2010 , 2012 .

[21]  M. Frezzotti,et al.  Interpreting last glacial to Holocene dust changes at Talos Dome (East Antarctica): implications for atmospheric variations from regional to hemispheric scales , 2012 .

[22]  H. Fischer,et al.  Centennial mineral dust variability in high-resolution ice core data from Dome C, Antarctica , 2012 .

[23]  Gerald H. Haug,et al.  Southern Ocean dust–climate coupling over the past four million years , 2011, Nature.

[24]  Liping Zhu,et al.  Variations in trace element (including rare earth element) concentrations with grain sizes in loess and their implications for tracing the provenance of eolian deposits , 2011 .

[25]  J. Stuut,et al.  Grain size control on Sr‐Nd isotope provenance studies and impact on paleoclimate reconstructions: An example from deep‐sea sediments offshore NW Africa , 2011 .

[26]  H. McGowan,et al.  Comment on "Lead isotopic evidence for an Australian source of aeolian dust to Antarctica at times over the last 170,000 years" by P. De Deckker, M. Norman, , 2010 .

[27]  B. Kamber,et al.  Trace-element systematics of sediments in the Murray-Darling Basin, Australia: Sediment provenance and palaeoclimate implications of fine scale chemical heterogeneity , 2010 .

[28]  Joseph M. Prospero,et al.  Global connections between aeolian dust, climate and ocean biogeochemistry at the present day and at the last glacial maximum , 2010 .

[29]  R. Gersonde,et al.  Diatom distributions in northern North Pacific surface sediments and their relationship to modern environmental variables , 2010 .

[30]  M. Norman,et al.  Lead isotopic evidence for an Australian source of aeolian dust to Antarctica at times over the last 170,000 years , 2010 .

[31]  M. Fleisher,et al.  Comparing glacial and Holocene opal fluxes in the Pacific sector of the Southern Ocean , 2009 .

[32]  David E. Sugden,et al.  Influence of Patagonian glaciers on Antarctic dust deposition during the last glacial period , 2009 .

[33]  A. Rosell‐Melé,et al.  Links between iron supply, marine productivity, sea surface temperature, and CO2 over the last 1.1 Ma , 2009 .

[34]  G. Eglinton,et al.  Molecular proxies for paleoclimatology , 2008 .

[35]  A. Clark,et al.  Identification of dust transport pathways from Lake Eyre, Australia using Hysplit , 2008 .

[36]  V. Ramaswamy,et al.  Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources , 2008 .

[37]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[38]  M. Bigler,et al.  Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core , 2008, Nature.

[39]  A. Schilt,et al.  Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years , 2007, Science.

[40]  F. Grousset,et al.  Eastern Australia: A possible source of dust in East Antarctica interglacial ice , 2006 .

[41]  Masaru Chiba,et al.  A numerical study of the contributions of dust source regions to the global dust budget , 2006 .

[42]  N. Mahowald,et al.  Change in atmospheric mineral aerosols in response to climate: Last glacial period, preindustrial, modern, and doubled carbon dioxide climates , 2006 .

[43]  G. Kuhn,et al.  Quantifying the opal belt in the Atlantic and southeast Pacific sector of the Southern Ocean by means of 230Th normalization , 2005 .

[44]  P. Deckker,et al.  Clay mineral, geochemical and Sr–Nd isotopic fingerprinting of sediments in the Murray–Darling fluvial system, southeast Australia , 2005 .

[45]  K. Assmann,et al.  Amundsen Sea ice production and transport , 2005 .

[46]  F. Grousset,et al.  Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes , 2005 .

[47]  G. McTainsh,et al.  High resolution provenancing of long travelled dust deposited on the Southern Alps, New Zealand , 2005 .

[48]  H. McGowan,et al.  Provenance of long‐travelled dust determined with ultra‐trace‐element composition: a pilot study with samples from New Zealand glaciers , 2005 .

[49]  N. Mahowald,et al.  Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate , 2005, Science.

[50]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[51]  Marie Ekström,et al.  Australian dust storms: temporal trends and relationships with synoptic pressure distributions (1960–99) , 2004 .

[52]  F. Albarède,et al.  Precise and accurate isotopic measurements using multiple-collector ICPMS 1 1 Associate editor: Y. Amelin , 2004 .

[53]  F. Grousset,et al.  Comparing the Epica and Vostok dust records during the last 220,000 years: stratigraphical correlation and provenance in glacial periods , 2004 .

[54]  H. Shimizu,et al.  Geochemical and isotopic studies of aeolian sediments in China , 2004 .

[55]  M. Frank,et al.  230Th-normalization: an essential tool for interpreting sedimentary fluxes during the late Quaternary , 2004 .

[56]  A. Hammond,et al.  Dust accumulation in the New Zealand region since the last glacial maximum. , 2003 .

[57]  G. McTainsh,et al.  Australian dust deposits: modern processes and the Quaternary record , 2003 .

[58]  Paul J. DeMott,et al.  Saharan dust storms and indirect aerosol effects on clouds: CRYSTAL‐FACE results , 2003 .

[59]  P. Kubik,et al.  Accumulation of biogenic and lithogenic material in the Pacific sector of the Southern Ocean during the past 40,000 years , 2003 .

[60]  O. Torres,et al.  ENVIRONMENTAL CHARACTERIZATION OF GLOBAL SOURCES OF ATMOSPHERIC SOIL DUST IDENTIFIED WITH THE NIMBUS 7 TOTAL OZONE MAPPING SPECTROMETER (TOMS) ABSORBING AEROSOL PRODUCT , 2002 .

[61]  Martin Frank,et al.  RADIOGENIC ISOTOPES: TRACERS OF PAST OCEAN CIRCULATION AND EROSIONAL INPUT , 2002 .

[62]  Sandy P. Harrison,et al.  DIRTMAP: the geological record of dust , 2001 .

[63]  Richard Arimoto,et al.  Eolian dust and climate: relationships to sources, tropospheric chemistry, transport and deposition , 2001 .

[64]  Andreas Bollhöfer,et al.  Isotopic source signatures for atmospheric lead: the Northern Hemisphere , 2000 .

[65]  Kazuya Takahashi,et al.  JNdi-1: a neodymium isotopic reference in consistency with LaJolla neodymium , 2000 .

[66]  Y. Erel,et al.  RbSr isotope systematics of a granitic soil chronosequence: The importance of biotite weathering , 1997 .

[67]  H. J. Walter,et al.  Enhanced scavenging of 231Pa relative to 230Th in the South Atlantic south of the Polar Front: Implications for the use of the 231Pa/230Th ratio as a paleoproductivity proxy , 1997 .

[68]  C. Pin,et al.  Sequential separation of light rare-earth elements, thorium and uranium by miniaturized extraction chromatography: Application to isotopic analyses of silicate rocks , 1997 .

[69]  M. Rebesco,et al.  Giant sediment drifts on the continental rise west of the Antarctic Peninsula , 1996 .

[70]  I. N. McCave,et al.  Sortable silt and fine sediment size/composition slicing: Parameters for palaeocurrent speed and palaeoceanography , 1995 .

[71]  S. Taylor,et al.  The geochemical evolution of the continental crust , 1995 .

[72]  A. Orsi,et al.  On the meridional extent and fronts of the Antarctic Circumpolar Current , 1995 .

[73]  I. Fung,et al.  Modeling of mineral dust in the atmosphere: Sources, transport, and optical thickness , 1994 .

[74]  Y. Erel,et al.  87Sr/86Sr ratios of sierra nevada stream waters: Implications for relative mineral weathering rates , 1993 .

[75]  D. Harkness,et al.  Holocene sediment fluxes in the northeast Atlantic from 230Thexcess and radiocarbon measurements , 1993 .

[76]  E. Horwitz,et al.  A NOVEL STRONTIUM-SELECTIVE EXTRACTION CHROMATOGRAPHIC RESIN* , 1992 .

[77]  S. Galer,et al.  Age and isotopic relationships among the angrites Lewis Cliff 86010 and Angra dos Reis , 1992 .

[78]  M. Thirlwall Long-term reproducibility of multicollector Sr and Nd isotope ratio analysis , 1991 .

[79]  John H. Martin glacial-interglacial Co2 change : the iron hypothesis , 1990 .

[80]  Kenneth Pye,et al.  Dust transport and the question of desert loess formation , 1987 .

[81]  S. Goldstein,et al.  A Sm-Nd isotopic study of atmospheric dusts and particulates from major river systems , 1984 .

[82]  M. Bacon Glacial to interglacial changes in carbonate and clay sedimentation in the Atlantic Ocean estimated from 230Th measurements , 1984 .

[83]  G. Wasserburg,et al.  Sm-Nd isotopic evolution of chondrites , 1980 .

[84]  J. Bowler Aridity in Australia: Age, origins and expression in aeolian landforms and sediments , 1976 .

[85]  Harry C. Starkey,et al.  Reactivity of Clay Minerals With Acids and Alkalies , 1971 .

[86]  E. J. Dasch,et al.  Strontium isotopes in weathering profiles, deep-sea sediments, and sedimentary rocks , 1969 .

[87]  Geoffrey Eglinton,et al.  Leaf Epicuticular Waxes , 1967, Science.

[88]  F. Strelow An Ion Exchange Selectivity Scale of Cations Based on Equilibrium Distribution Coefficients , 1960 .

[89]  R. Gersonde The expedition of the research vessel "Polarstern" to the polar South Pacific in 2009/2010 (ANT-XXVI/2 - BIPOMAC) , 2011 .

[90]  P. Gabrielli,et al.  Lead isotopic compositions in the EPICA Dome C ice core and Southern Hemisphere Potential Source Areas , 2010 .

[91]  R. Schlitzer Ocean Data View , 2007 .

[92]  F. Zeng,et al.  Size-dependent geochemical characteristics of Asian dust - Sr and Nd isotope compositions as tracers , 2005 .

[93]  M. Frank,et al.  230 Th normalization : An essential tool for interpreting sedimentary fluxes during the late Quaternary , 2004 .

[94]  G. Henderson,et al.  The U-series Toolbox for Paleoceanography , 2003 .

[95]  S. Galer,et al.  Practical application of lead triple spiking for correction of instrumental mass discrimination , 1998 .

[96]  P. Hesse The record of continental dust from Australia in Tasman Sea Sediments , 1994 .

[97]  G. McTainsh Quaternary aeolian dust processes and sediments in the Australian region , 1989 .

[98]  P. Brewer,et al.  Sediment trap experiments in the deep north Atlantic: isotopic and elemental fluxes , 1980 .