A Low-Multipath Wideband GPS Antenna With Cutoff or Non-Cutoff Corrugated Ground Plane

We compare the performance of the classic global positioning system (GPS) choke ring ground plane with a new shallower design. Both the choke ring and the new ground plane are here designed to operate uniformly between 1.15 GHz and 1.60 GHz while maintaining the required low-multipath performance in the whole bandwidth. To achieve reception in this wide range of frequencies, the radiating element chosen is a droopy bowtie turnstile. A classic choke ring is composed of deep concentric rings on a flat circular metal ground plane. We have modeled the choke ring as a metal corrugated surface of depth d such that lambda/4lesdleslambda/2 , operating at cutoff: the multipath suppression (i.e., the proper RHCP/LHCP pattern shaping) is obtained by eliminating the surface wave on the ground plane in a certain frequency band. When shallower concentric rings of depth dleslambda/4 are used, the corrugated surface operates at non-cutoff: the required multipath rejection can be achieved by cancellation (destructive interference) rather than suppression of surface waves. The comparisons performed in this study include theory, numerical simulations, and hardware tests. Our results show that both configurations, when properly optimized, are good candidates for reception of modernized GPS, GLONASS, and GALILEO satellite signals from GPS permanent stations.

[1]  T. Milligan Modern Antenna Design , 1985 .

[2]  Thomas A. Milligan,et al.  Modern Antenna Design: Milligan/Modern Antenna Design , 2005 .

[3]  Eddie N. Rosario,et al.  GPS Microstrip Antenna Array on a Resistivity Tapered Ground Plane for Multipath Mitigation , 2000 .

[4]  R. Harrington Time-Harmonic Electromagnetic Fields , 1961 .

[5]  Yehuda Bock,et al.  Seismic wave observations with the Global Positioning System , 2001 .

[6]  M.F. Iskander,et al.  Comparative study of high performance GPS receiving antenna designs , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[7]  J. M. Tranquilla,et al.  Development of a class of antennas for space-based NAVSTAR GPS applications , 1989 .

[8]  H. Al‐Rizzo,et al.  Analysis of a choke ring groundplane for multipath control in Global Positioning System (GPS) applications , 1994 .

[9]  Alison Brown,et al.  High Accuracy GPS Performance using a Digital Adaptive Antenna Array , 2001 .

[10]  Suman Ganguly,et al.  Multiband L5 Capable GPS Antenna with Reduced Backlobes , 2004 .

[11]  Weihua Zhuang,et al.  Effects of multipath and antenna on GPS observables , 1995 .

[12]  Pedro Elosegui,et al.  Geodesy Using the Global Positioning System: The Effects of Signal Scattering , 1995 .

[13]  G. Kriegsmann,et al.  Scattering by a rectangularly corrugated surface: an approximate theory , 1996 .

[14]  Bruce R. Schupler,et al.  Signal Characteristics of GPS User Antennas , 1994 .

[15]  C. Balanis Antenna theory , 1982 .

[16]  Yehuda Bock,et al.  Detection of arbitrarily large dynamic ground motions with a dense high‐rate GPS network , 2004 .

[17]  Yehuda Bock,et al.  Instantaneous geodetic positioning at medium distances with the Global Positioning System , 2000 .

[18]  R.D.J. Van Nee Spread-spectrum code and carrier synchronization errors caused by multipath and interference , 1993 .

[19]  D.R. Jackson,et al.  A comparative study of a new GPS reduced-surface-wave antenna , 2005, IEEE Antennas and Wireless Propagation Letters.

[20]  J. B. Rundle,et al.  GEM Plate Boundary Simulations for the Plate Boundary Observatory: A Program for Understanding the Physics of Earthquakes on Complex Fault Networks via Observations, Theory and Numerical Simulation , 2002 .

[21]  Charles C. Counselman,et al.  Multipath-rejecting GPS antennas , 1999, Proc. IEEE.

[22]  J.-S. Kuo,et al.  Dual-band microstrip antenna using capacitive loading , 2003 .

[23]  Per-Simon Kildal,et al.  Artificially soft and hard surfaces in electromagnetics , 1990 .

[24]  John L. Volakis,et al.  A Novel 1.5 Quadruple Antenna for Tri-Band GPS Applications , 2006 .

[25]  Waldemar Kunysz,et al.  High Performance GPS Pinwheel Antenna , 2000 .

[26]  Javad Ashjaee,et al.  Measured Characteristics of Dual Depth Dual Frequency Choke Ring for Multipath Rejection in GPS Receivers , 1999 .

[27]  Constantine A. Balanis,et al.  Antenna Theory: Analysis and Design , 1982 .

[28]  W. Kunysz,et al.  A Three Dimensional Choke Ring Ground Plane Antenna , 2003 .

[29]  Paul Bodin,et al.  Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake , 2003, Science.

[30]  D. Sievenpiper,et al.  High-impedance electromagnetic surfaces with a forbidden frequency band , 1999 .

[31]  Raj Mittra,et al.  Multi-band L/sub 5/-capable GPS antenna with reduced backlobes , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[32]  J. Volakis,et al.  Dual Band Proximity-Fed Stacked Patch Antenna for Tri-Band GPS Applications , 2007, IEEE Transactions on Antennas and Propagation.

[33]  Boccia,et al.  A dual frequency microstrip patch antenna for high-precision GPS applications , 2004, IEEE Antennas and Wireless Propagation Letters.

[34]  Elliott D. Kaplan Understanding GPS : principles and applications , 1996 .

[35]  Lambert Wanninger,et al.  Carrier Phase Multipath Calibration of GPS Reference Stations , 2000 .

[36]  T. Milligan,et al.  Optimization of ground plane for improved GPS antenna performance , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[37]  Michael S. Braasch Optimum Antenna Design for DGPS Ground Reference Stations , 1994 .

[38]  Bradford W. Parkinson,et al.  Global positioning system : theory and applications , 1996 .

[39]  S. Koulouridis,et al.  A Novel 1.5 $^primeprime$ Quadruple Antenna for Tri-Band GPS Applications , 2006, IEEE Antennas and Wireless Propagation Letters.

[40]  S. Koulouridis,et al.  A miniature four-arm antenna for tri-band GPS applications , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[41]  D. Jackson,et al.  A New Planar Dual-Band GPS Antenna Designed for Reduced Susceptibility to Low-Angle Multipath , 2007, IEEE Transactions on Antennas and Propagation.

[42]  Thomas A. Clark,et al.  Characterizations of GPS User Antennas: Reanalysis and New Results , 1996 .

[43]  Penina Axelrad,et al.  An Adaptive SNR-Based Carrier Phase Multipath Mitigation Technique , 1996 .

[44]  A. Olver,et al.  Corrugated Horns for Microwave Antennas , 1984 .

[45]  A. M. Dinius GPS Antenna Multipath Rejection Performance , 1995 .