Differential equations method: the calculation of vertex-type Feynman diagrams

Abstract We expand the earlier introduced method of massive Feynman diagram calculation, namely, the differential equations method, to vertex-type diagrams. We show that this method provides a simple procedure of evaluating the result without D -space vertex- or propagator-type integrals (for the dimensional regularization) calculation.

[1]  A. Kotikov Differential equations method. New technique for massive Feynman diagram calculation , 1991 .

[2]  F. Tkachov,et al.  Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .

[3]  T. Curtright Three-loop charge renormalization effects due to quartic scalar self-interactions , 1980 .

[4]  D. Broadhurst The master two-loop diagram with masses , 1990 .

[5]  D. Kazakov,et al.  Total αs correction to the deep-inelastic scattering cross-sections ratio R = σL/σT in QCD , 1988 .

[6]  A. Vladimirov Method of calculating renormalization-group functions in the scheme of dimensional regularization , 1980 .

[7]  R. Keener,et al.  New approach to the calculation of F_{1}(a) in massless quantum electrodynamics , 1977 .

[8]  I. G. Halliday,et al.  Negative dimensional integrals. I. Feynman graphs , 1987 .

[9]  A Method for Feynman Diagram Evaluation , 1980 .

[10]  J. Vermaseren,et al.  Large loop integrals , 1984 .

[11]  D. Kazakov The method of uniqueness, a new powerful technique for multiloop calculations , 1983 .

[12]  W. N. Bailey,et al.  Generalized hypergeometric series , 1935 .

[13]  David J. Broadhurst,et al.  Evaluation of a class of Feynman diagrams for all numbers of loops and dimensions , 1985 .

[14]  K. Hagiwara,et al.  Heavy quark threshold effects in two-loop order in quantum chromodynamics , 1984 .

[15]  L. Peliti,et al.  Theoretical predictions for critical exponents at the λ-point of bose liquids , 1971 .

[16]  D. Kazakov,et al.  Uniqueness method: Multiloop calculations in QCD , 1987 .

[17]  A. Kotikov Method of calculating the moments of the structure functions of deep inelastic scattering in quantum chromodynamics , 1989 .

[18]  F. Tkachov,et al.  New approach to evaluation of multiloop Feynman integrals: The Gegenbauer polynomial x-space technique , 1980 .

[19]  R. Gonsalves,et al.  Fourth-order quantum-chromodynamic contributions to the e + − e − annihilation cross section , 1980 .

[20]  Leonard Lewin,et al.  Polylogarithms and Associated Functions , 1981 .

[21]  David J. Broadhurst,et al.  Z2×S6 symmetry of the two-loop diagram , 1988 .