Time-dependent and steady-state Gutzwiller approach for nonequilibrium transport in nanostructures

We extend the time-dependent Gutzwiller variational approach, recently introduced by Schir\`o and Fabrizio, Phys. Rev. Lett. 105 076401 (2010), to impurity problems. Furthermore, we derive a consistent theory for the steady state, and show its equivalence with the previously introduced nonequilibrium steady-state extension of the Gutzwiller approach. The method is shown to be able to capture dissipation in the leads, so that a steady state is reached after a sufficiently long relaxation time. The time-dependent method is applied to the single orbital Anderson impurity model at half-filling, modeling a quantum dot coupled to two leads. In these first exploratory calculations the Gutzwiller projector is limited to act only on the impurity. The strengths and the limitations of this approximation are assessed via comparison with state of the art continuous time quantum Monte Carlo results. Finally, we discuss how the method can be systematically improved by extending the region of action of the Gutzwiller projector.

[1]  D. Urban,et al.  Anderson impurity model in nonequilibrium: Analytical results versus quantum Monte Carlo data , 2011 .

[2]  M. Fabrizio,et al.  Quantum Quenches in the Hubbard Model: Time Dependent Mean Field Theory and The Role of Quantum Fluctuations , 2011, 1102.1658.

[3]  M. Troyer,et al.  Continuous-time Monte Carlo methods for quantum impurity models , 2010, 1012.4474.

[4]  C. Timm Time-convolutionless master equation for quantum dots: Perturbative expansion to arbitrary order , 2010, 1011.2371.

[5]  D. Reichman,et al.  Numerically exact path-integral simulation of nonequilibrium quantum transport and dissipation , 2010, 1008.5200.

[6]  Pei Wang,et al.  Flow equation calculation of transient and steady-state currents in the Anderson impurity model , 2010, 1006.5203.

[7]  Michele Fabrizio,et al.  Time-dependent mean field theory for quench dynamics in correlated electron systems. , 2010, Physical review letters.

[8]  Jong E Han Imaginary-time formulation of steady-state nonequilibrium in quantum dot models , 2010, 1001.4989.

[9]  R. Egger,et al.  Comparative study of theoretical methods for non-equilibrium quantum transport , 2010, 1001.3773.

[10]  C. Karrasch,et al.  Functional renormalization group study of the interacting resonant level model in and out of equilibrium , 2009, 0911.5165.

[11]  N. Lanatà Variational approach to transport in quantum dots , 2009, 0911.1292.

[12]  Martin Eckstein,et al.  Weak-coupling quantum Monte Carlo calculations on the Keldysh contour: theory and application to the current-voltage characteristics of the Anderson model , 2009, 0911.0587.

[13]  D. Schuricht,et al.  Relaxation versus decoherence: spin and current dynamics in the anisotropic Kondo model at finite bias and magnetic field. , 2009, Physical review letters.

[14]  S. Schmitt,et al.  Comparison between scattering-states numerical renormalization group and the Kadanoff-Baym-Keldysh approach to quantum transport: Crossover from weak to strong correlations , 2009, 0909.5555.

[15]  A. Clerk,et al.  Theory of nonequilibrium transport in the SU(N) Kondo regime , 2009, 0906.2791.

[16]  A. Gossard,et al.  Electron counting in quantum dots , 2009, 0905.4675.

[17]  E. Dagotto,et al.  Real-time simulations of nonequilibrium transport in the single-impurity Anderson model , 2009, 0903.2414.

[18]  H. Schoeller,et al.  A perturbative nonequilibrium renormalization group method for dissipative quantum mechanics , 2009, 0902.1449.

[19]  Z. Ratiani,et al.  1 N expansion of the nonequilibrium infinite- U Anderson model , 2009, 0902.1263.

[20]  M. Vojta,et al.  Nonequilibrium transport at a dissipative quantum phase transition. , 2008, Physical review letters.

[21]  Philipp Werner,et al.  Diagrammatic Monte Carlo simulation of nonequilibrium systems , 2008, 0810.2345.

[22]  M. Fabrizio,et al.  Real-time diagrammatic Monte Carlo for nonequilibrium quantum transport , 2008, 0808.0589.

[23]  P. Werner,et al.  Transient dynamics of the Anderson impurity model out of equilibrium , 2008, 0808.0442.

[24]  P. Barone,et al.  Fermi-surface evolution across the magnetic phase transition in the Kondo lattice model , 2008, 0807.3849.

[25]  P. Schmitteckert,et al.  Twofold advance in the theoretical understanding of far-from-equilibrium properties of interacting nanostructures. , 2008, Physical review letters.

[26]  F. Anders Steady-state currents through nanodevices: a scattering-states numerical renormalization-group approach to open quantum systems. , 2008, Physical review letters.

[27]  A. Clerk,et al.  Effects of fermi liquid interactions on the shot noise of an SU(N) Kondo quantum dot. , 2008, Physical review letters.

[28]  N. Regnault,et al.  Current noise through a Kondo quantum dot in a SU(N) Fermi liquid state. , 2007, Physical review letters.

[29]  Eran Rabani,et al.  Real-time path integral approach to nonequilibrium many-body quantum systems. , 2007, Physical review letters.

[30]  Jong E Han,et al.  Imaginary-time formulation of steady-state nonequilibrium: application to strongly correlated transport. , 2007, Physical review letters.

[31]  M. Fabrizio Gutzwiller description of non-magnetic Mott insulators : Dimer lattice model , 2007, 0704.1389.

[32]  P. Nordlander,et al.  Transient current in a quantum dot asymmetrically coupled to metallic leads , 2007, 0707.3973.

[33]  S. G. Jakobs,et al.  Nonequilibrium functional renormalization group for interacting quantum systems. , 2007, Physical review letters.

[34]  J. E. Han Mapping of strongly correlated steady-state nonequilibrium system to an effective equilibrium , 2006, cond-mat/0604583.

[35]  N. Andrei,et al.  Nonequilibrium transport in quantum impurity models: the Bethe ansatz for open systems. , 2005, Physical review letters.

[36]  B. Doyon,et al.  Universal aspects of nonequilibrium currents in a quantum dot , 2005, cond-mat/0506235.

[37]  S. Kehrein Scaling and decoherence in the nonequilibrium Kondo model. , 2004, Physical review letters.

[38]  L. Vandersypen,et al.  Real-time detection of single-electron tunneling using a quantum point contact , 2004, cond-mat/0407121.

[39]  A. Gossard,et al.  Time-resolved detection of individual electrons in a quantum dot , 2004, cond-mat/0406568.

[40]  L. Glazman,et al.  Kondo effect in quantum dots , 2004, cond-mat/0401517.

[41]  Taku Matsui,et al.  VARIATIONAL PRINCIPLE FOR NON-EQUILIBRIUM STEADY STATES OF THE XX MODEL , 2003 .

[42]  H. Araki,et al.  EQUILIBRIUM STATISTICAL MECHANICS OF FERMION LATTICE SYSTEMS , 2002, math-ph/0211016.

[43]  P. Wölfle,et al.  Nonequilibrium transport through a Kondo dot in a magnetic field: perturbation theory and poor man's scaling. , 2002, Physical review letters.

[44]  J. Lorenzana,et al.  Stability of ferromagnetism within the time‐dependent Gutzwiller approximation for the Hubbard model , 2000, Physical review letters.

[45]  Schoeller,et al.  Real-time renormalization group and charge fluctuations in quantum dots , 1999, Physical review letters.

[46]  M. Kastner,et al.  Kondo effect in a single-electron transistor , 1997, Nature.

[47]  A. Ludwig,et al.  Exact conductance through point contacts in the nu =1/3 fractional quantum Hall Effect. , 1994, Physical review letters.

[48]  Hershfield Reformulation of steady state nonequilibrium quantum statistical mechanics. , 1993, Physical review letters.

[49]  Wilkins,et al.  Probing the Kondo resonance by resonant tunneling through an Anderson impurity. , 1991, Physical review letters.

[50]  P. Nozières A “fermi-liquid” description of the Kondo problem at low temperatures , 1974 .

[51]  M. Gutzwiller,et al.  Correlation of Electrons in a Narrow s Band , 1965 .

[52]  M. Gutzwiller Effect of Correlation on the Ferromagnetism of Transition Metals , 1963 .

[53]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.