A Double Disturbed Lunar Plasma Wake

Under nominal solar wind conditions, a tenuous wake forms downstream of the lunar nightside. However, the lunar plasma environment undergoes a transformation as the Moon passes through the Earth's magnetotail, with hot subsonic plasma causing the wake structure to disappear. We investigate the lunar wake response during a passing coronal mass ejection (CME) on March 8, 2012 while crossing the Earth's magnetotail using both a magnetohydrodynamic (MHD) model of the terrestrial magnetosphere and a three‐dimensional hybrid plasma model of the lunar wake. The CME arrives at 1 AU around 10:30 UT and its impact is first detected inside the geomagnetic tail after 11:10 UT by the Acceleration, Reconnection, Turbulence and Electrodynamics of the Moon's Interaction with the Sun (THEMIS‐ARTEMIS) satellites in lunar orbit. A global magnetospheric MHD simulation using Wind data for upstream conditions with the OpenGGCM model reveals the magnetosheath compression to the lunar position from 11:20–12:00 UT, accompanied by multiple flux rope or plasmoid‐like features developing and propagating tailward. MHD results support plasma changes observed by the THEMIS‐ARTEMIS satellites. Lunar‐scale simulations using the Amitis hybrid code show a short and misaligned plasma wake during the Moon's brief entry into the magnetosheath at 11:20 UT, with plasma expansion into the void being aided by the higher plasma temperatures. Sharply accelerated flow speed and a compressed magnetic field lead to an enhanced electric field in the lunar wake capable of generating sudden changes to the nightside near‐surface electric potential.

[1]  E. al.,et al.  Unusual Location of the Geotail Magnetopause Near Lunar Orbit: A Case Study , 2020, Journal of Geophysical Research: Space Physics.

[2]  S. Fatemi,et al.  Hybrid Simulations of Solar Wind Proton Precipitation to the Surface of Mercury , 2020, Journal of Geophysical Research: Space Physics.

[3]  A. Poppe Comment on “The Dominant Role of Energetic Ions in Solar Wind Interaction With the Moon” by Omidi et al. , 2019, Journal of Geophysical Research: Space Physics.

[4]  D. Rhodes,et al.  Steady‐State Solution of a Solar Wind‐Generated Electron Cloud in a Lunar Crater , 2019, Journal of Geophysical Research: Space Physics.

[5]  S. Fatemi,et al.  The Lunar Paleo‐Magnetosphere: Implications for the Accumulation of Polar Volatile Deposits , 2019, Geophysical Research Letters.

[6]  D. Mitchell,et al.  Mapping the Lunar Wake Potential Structure With ARTEMIS Data , 2019, Journal of geophysical research. Space physics.

[7]  I. Pater,et al.  Time‐Dependent Hybrid Plasma Simulations of Lunar Electromagnetic Induction in the Solar Wind , 2019, Geophysical Research Letters.

[8]  N. Poirier,et al.  A modelling approach to infer the solar wind dynamic pressure from magnetic field observations inside Mercury’s magnetosphere , 2018, Astronomy & Astrophysics.

[9]  S. Fatemi,et al.  Solar Wind Plasma Interaction with Asteroid 16 Psyche: Implication for Formation Theories , 2018 .

[10]  J. Halekas,et al.  Photoemission and electrostatic potentials on the dayside lunar surface in the terrestrial magnetotail lobes , 2017, Geophysical research letters.

[11]  William M. Farrell,et al.  AMITIS: A 3D GPU-Based Hybrid-PIC Model for Space and Plasma Physics , 2017 .

[12]  A. Bhardwaj,et al.  Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations , 2016, 1602.06424.

[13]  L. P. Karakatsanis,et al.  THE MAJOR GEOEFFECTIVE SOLAR ERUPTIONS OF 2012 MARCH 7: COMPREHENSIVE SUN-TO-EARTH ANALYSIS , 2016 .

[14]  Xiaojun Xu,et al.  Subsonic and sunward-orientated lunar wake observed by ARTEMIS in the geomagnetotail , 2015 .

[15]  M. Nishino,et al.  Kaguya observations of the lunar wake in the terrestrial foreshock: Surface potential change by bow-shock reflected ions , 2015 .

[16]  S. Fatemi,et al.  Effects of protons reflected by lunar crustal magnetic fields on the global lunar plasma environment , 2014 .

[17]  J. Halekas,et al.  The effects of solar wind velocity distributions on the refilling of the lunar wake: ARTEMIS observations and comparisons to one‐dimensional theory , 2014 .

[18]  W. L. Liu,et al.  Three‐dimensional lunar wake reconstructed from ARTEMIS data , 2014 .

[19]  M. Kivelson,et al.  Saturn's dynamic magnetotail: A comprehensive magnetic field and plasma survey of plasmoids and traveling compression regions and their role in global magnetospheric dynamics , 2014 .

[20]  Mats Holmström,et al.  ARTEMIS observations of extreme diamagnetic fields in the lunar wake , 2014 .

[21]  D. Sibeck,et al.  Size and shape of the distant magnetotail , 2014 .

[22]  K. Glassmeier,et al.  Stellar winds and planetary bodies simulations: Lunar type interaction in super-Alfvénic and sub-Alfvénic flows , 2013 .

[23]  E. Harnett,et al.  Flux rope passage at the Moon while in the terrestrial magnetotail , 2013 .

[24]  J. Halekas,et al.  ARTEMIS observations of lunar dayside plasma in the terrestrial magnetotail lobe , 2013 .

[25]  J. Richardson,et al.  ON SUN-TO-EARTH PROPAGATION OF CORONAL MASS EJECTIONS , 2013, 1512.07949.

[26]  Yoshifumi Futaana,et al.  The lunar wake current systems , 2013 .

[27]  D. D. Zeeuw,et al.  Three-dimensional MHD simulation of the lunar wake , 2013, Science China Earth Sciences.

[28]  Yoshifumi Futaana,et al.  The effects of lunar surface plasma absorption and solar wind temperature anisotropies on the solar wind proton velocity space distributions in the low-altitude lunar plasma wake , 2012 .

[29]  V. Angelopoulos,et al.  On the formation of tilted flux ropes in the Earth's magnetotail observed with ARTEMIS , 2012 .

[30]  Yoshifumi Futaana,et al.  The interaction between the Moon and the solar wind , 2011, Earth, Planets and Space.

[31]  W. Ip,et al.  A 3D hybrid simulation study of the electromagnetic field distributions in the lunar wake , 2011 .

[32]  Vassilis Angelopoulos,et al.  The ARTEMIS Mission , 2011 .

[33]  William M. Farrell,et al.  New views of the lunar plasma environment , 2011 .

[34]  J. Halekas,et al.  Solar wind access to lunar polar craters: Feedback between surface charging and plasma expansion , 2011 .

[35]  M. Horányi,et al.  Negative potentials above the day‐side lunar surface in the terrestrial plasma sheet: Evidence of non‐monotonic potentials , 2011 .

[36]  Andrew R. Poppe,et al.  Simulations of the photoelectron sheath and dust levitation on the lunar surface , 2010 .

[37]  Hilary V. Cane,et al.  Near-Earth Interplanetary Coronal Mass Ejections During Solar Cycle 23 (1996 – 2009): Catalog and Summary of Properties , 2010 .

[38]  William M. Farrell,et al.  Anticipated electrical environment within permanently shadowed lunar craters , 2010 .

[39]  M. Fujimoto,et al.  Pairwise energy gain‐loss feature of solar wind protons in the near‐Moon wake , 2009 .

[40]  J. Halekas,et al.  Lunar Prospector measurements of secondary electron emission from lunar regolith , 2009 .

[41]  C. Coillot,et al.  The Search Coil Magnetometer for THEMIS , 2008 .

[42]  R. Abiad,et al.  The THEMIS ESA Plasma Instrument and In-flight Calibration , 2008 .

[43]  T. Fuller‐Rowell,et al.  OpenGGCM Simulations for the THEMIS Mission , 2008 .

[44]  J. Halekas,et al.  Lunar Prospector observations of the electrostatic potential of the lunar surface and its response to incident currents , 2008 .

[45]  Werner Magnes,et al.  The THEMIS Fluxgate Magnetometer , 2008 .

[46]  L. Lei 2D MHD Simulation of the Lunar Wake , 2008 .

[47]  D. Mitchell,et al.  Electrons and magnetic fields in the lunar plasma wake , 2005 .

[48]  J. Steinberg,et al.  Similarities in the plasma wake of the moon and space shuttle , 2002 .

[49]  S. Chapman,et al.  Particle‐in‐cell simulations of the lunar wake with high phase space resolution , 2001 .

[50]  Y. Kamide,et al.  Convection in the distant magnetotail under extremely quiet and weakly disturbed conditions , 1999 .

[51]  William M. Farrell,et al.  A simple simulation of a plasma void: Applications to Wind observations of the lunar wake , 1998 .

[52]  A. Lui Road map to magnetotail domains , 1987 .

[53]  J. Allen,et al.  The expansion of a plasma into a vacuum , 1975, Journal of Plasma Physics.

[54]  R. Manka,et al.  PLASMA AND POTENTIAL AT THE LUNAR SURFACE , 1973 .

[55]  M. C. Marsh,et al.  HYDROMAGNETIC ASPECTS OF SOLAR WIND FLOW PAST THE MOON. , 1970 .

[56]  J. Mihalov,et al.  Diamagnetic Solar-Wind Cavity Discovered behind Moon , 1967, Science.