Explicit invariant approximation of the mRPI set for LTI dynamics with zonotopic disturbances

In this paper we provide a robust positive invariance (RPI) over-approximation of the minimal RPI (mRPI) set associated for linear dynamics with zonotopic disturbances. We prove that the RPI construction converges toward the mRPI set and its conservatism diminishes monotonically with respect to the complexity of the representation (a “tightness” coefficient is calculated a priori). The results are tested in illustrative examples.

[1]  D. Bertsekas,et al.  On the minimax reachability of target sets and target tubes , 1971 .

[2]  José A. De Doná,et al.  Positive invariant sets for fault tolerant multisensor control schemes , 2010, Int. J. Control.

[3]  David Q. Mayne,et al.  Control of Constrained Dynamic Systems , 2001, Eur. J. Control.

[4]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[5]  Zvi Artstein,et al.  Feedback and invariance under uncertainty via set-iterates , 2008, Autom..

[6]  Ilya Kolmanovsky,et al.  Fast reference governors for systems with state and control constraints and disturbance inputs , 1999 .

[7]  Tingshu Hu,et al.  An explicit description of null controllable regions of linear systems with saturating actuators , 2002, Syst. Control. Lett..

[8]  E. Gilbert,et al.  Theory and computation of disturbance invariant sets for discrete-time linear systems , 1998 .

[9]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[10]  C. Olech,et al.  Extremal solutions of a control system , 1966 .

[11]  L. Guibas,et al.  Implicit bounding volumes and bounding volume hierarchies , 2006 .

[12]  O. Stursberg,et al.  Computing Reachable Sets of Hybrid Systems Using a Combination of Zonotopes and Polytopes , 2010 .

[13]  Komei Fukuda,et al.  From the zonotope construction to the Minkowski addition of convex polytopes , 2004, J. Symb. Comput..

[14]  María M. Seron,et al.  A systematic method to obtain ultimate bounds for perturbed systems , 2007, Int. J. Control.

[15]  M. Seron,et al.  Zonotopic ultimate bounds for linear systems with bounded disturbances , 2011 .

[16]  David Q. Mayne,et al.  Robust time-optimal control of constrained linear Systems , 1997, Autom..

[17]  Tingshu Hu,et al.  Null controllable region of LTI discrete-time systems with input saturation , 2002, Autom..

[18]  Tingshu Hu,et al.  Controllable regions of LTI discrete-time systems with input saturation , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).