Moduli interpretation of Eisenstein series

Let L >= 3. Using the moduli interpretation, we define certain elliptic modular forms of level Gamma(L) over any field k where 6L is invertible and k contains the Lth roots of unity. These forms generate a graded algebra R_L, which, over C, is generated by the Eisenstein series of weight 1 on Gamma(L). The main result of this article is that, when k=C, the ring R_L contains all modular forms on Gamma(L) in weights >= 2. The proof combines algebraic and analytic techniques, including the action of Hecke operators and nonvanishing of L-functions. Our results give a systematic method to produce models for the modular curve X(L) defined over the Lth cyclotomic field, using only exact arithmetic in the L-torsion field of a single Q-rational elliptic curve E^0.

[1]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[2]  G. Stevens A Modular Symbol with Values in Cusp Forms , 2006 .

[3]  Robert Lazarsfeld,et al.  A Sampling of Vector Bundle Techniques in the Study of Linear Series , 1989 .

[4]  Hervé Jacquet,et al.  A non-vanishing theorem for zeta functions ofGLn , 1976 .

[5]  Kamal Khuri-Makdisi,et al.  Asymptotically fast group operations on Jacobians of general curves , 2004, Math. Comput..

[6]  Paul E. Gunnells,et al.  Toric modular forms of higher weight , 2002, math/0203242.

[7]  Robert Lazarsfeld,et al.  On a theorem of Castelnuovo, and the equations defining space curves , 1983 .

[8]  Toric Modular Forms And Nonvanishing Of L-Functions , 1999, math/9910141.

[9]  G. Shimura The special values of the zeta functions associated with cusp forms , 1976 .

[10]  G. Stevens Periods of Modular Forms , 1982 .

[11]  Paul E. Gunnells,et al.  Toric varieties and modular forms , 1999, math/9908138.

[12]  G. Cornelissen Drinfeld Modular Forms of Weight One , 1997 .

[13]  E. Hecke Theorie der Eisensteinschen Reihen höherer Stufe und ihre Anwendung auf Funktionentheorie und Arithmetik , 1927 .

[14]  Marvin Tretkoff,et al.  Introduction to the Arithmetic Theory of Automorphic Functions , 1971 .

[15]  Kamal Khuri-Makdisi Linear algebra algorithms for divisors on an algebraic curve , 2004, Math. Comput..

[16]  Paul E. Gunnells,et al.  Elliptic functions and equations of modular curves , 2000, math/0010272.

[17]  志村 五郎 Elementary Dirichlet series and modular forms , 2007 .

[18]  N. M. Katz p-adic Interpolation of Real Analytic Eisenstein Series , 1976 .

[19]  G. Shimura On the periods of modular forms , 1977 .

[20]  Bjorn Poonen,et al.  Finiteness results for modular curves of genus at least 2 , 2002 .

[21]  Steven D. Galbraith,et al.  Equations for modular curves , 1996 .

[22]  E. Hecke,et al.  Zur Theorie der elliptischen Modulfunktionen , 1927 .