Representing Context-Sensitive Knowledge in a Network Formalism: A Preliminary Report

Automated decision making is often complicated by the complexity of the knowledge involved. Much of this complexity arises from the context-sensitive variations of the underlying phenomena. We propose a framework for representing descriptive, context-sensitive knowledge. Our approach attempts to integrate categorical and uncertain knowledge in a network formalism. This paper outlines the basic representation constructs, examines their expressiveness and efficiency, and discusses the potential applications of the framework.