Chapter 11 Analysis and design of membrane permeators for gas separation

Publisher Summary This chapter discusses analysis and design of membrane permeators for gas separation. As membrane gas separation technology matures, the need to understand the performance of membrane separators in a process configuration becomes increasingly important. The separation characteristics of permeators will directly affect the process economics. The capability of performance analysis and prediction is, therefore, an essential part of the technology development. The performance analysis also aids directly in designing membrane modules for a given separation requirement. Furthermore, membrane separations are often used in hybrid processes, i.e., as processes in conjunction with other separation processes, or other unit operations. Analysis and design of membrane permeators are, therefore, essential tools even in the preliminary process design stage. The actual mechanism of gas transport and separation can also vary. Different postulated mechanisms are solution—diffusion, facilitation, Knudsen diffusion, surface diffusion and molecular sieving.

[1]  K. Kammermeyer,et al.  Counter-current and co-current gas separation , 1973 .

[2]  C. F. King,et al.  Analysis of Gas Separation by Permeation in Hollow Fibers , 1977 .

[3]  K. Sirkar,et al.  Ternary gas separation using two different membranes , 1988 .

[4]  H. Frisch,et al.  The Selective Permeation of Gases Through Polymers , 1981 .

[5]  S. A. Stern,et al.  Analysis of Membrane Separation Parameters , 1969 .

[6]  K. Sirkar,et al.  Series solutions for a gas permeator with countercurrent and cocurrent flow , 1984 .

[7]  W. P. Walawender,et al.  Analysis of Membrane Separation Parameters. II. Counter-current and Cocurrent Flow in a Single Permeation Stage , 1972 .

[8]  Y. Kao,et al.  Economic evaluation of gas membrane separator designs , 1989 .

[9]  Sun-Tak Hwang,et al.  Membranes in separations , 1975 .

[10]  Kamalesh K. Sirkar,et al.  Hollow fiber gas permeator with countercurrent or cocurrent flow: series solutions , 1986 .

[11]  K. Kammermeyer,et al.  Separation of Gases by Plastic Membranes - Permeation Rates and Extent of Separation , 1954 .

[12]  H. K. Lonsdale,et al.  The growth of membrane technology , 1982 .

[13]  K. Kimmerle,et al.  Solvent recovery from air , 1988 .

[14]  G. K. Fleming,et al.  The effects of CO2 exposure on pure and mixed gas permeation behavior: comparison of glassy polycarbonate and silicone rubber , 1987 .

[15]  C. Pan,et al.  An Analysis of the Single-Stage Gaseous Permeation Process , 1974 .

[16]  J. G. Wijmans,et al.  Economic comparison of several membrane configurations for H2/N2 separation , 1989 .

[17]  K. Sirkar,et al.  Multicomponent gas separation by an asymmetric permeator containing two different membranes , 1984 .

[18]  P. O. Backer,et al.  Enrichment calculations in gaseous diffusion: Large separation factor , 1955 .

[19]  R. Amos,et al.  Recent developments in separation science , 1975 .

[20]  T. Alan Hatton,et al.  Recent advances in separation techniques III , 1980 .

[21]  Kamalesh K. Sirkar,et al.  Ternary gas mixture separation in two‐membrane permeators , 1987 .

[22]  H. W. Habgood,et al.  Gas separation by permeation Part II: Effect of permeate pressure drop and choice of permeate pressure† , 1978 .

[23]  R Rautenbach,et al.  The separation of multicomponent mixtures by gas permeation , 1985 .

[24]  H. Strathmann,et al.  Removal of organic vapors from air by selective membrane permeation , 1988 .

[25]  J. A. Quinn,et al.  Separation of gases with synthetic membranes , 1983 .

[26]  Kamalesh K. Sirkar,et al.  Asymmetric cellulose acetate hollow fibers: studies in gas permeation , 1988 .

[27]  Sun-Tak Hwang,et al.  The continuous membrane column , 1980 .

[28]  C. Libove,et al.  The permeation of gases through hollow silicone rubber fibers: Effect of fiber elasticity on gas permeability , 1977 .

[29]  C. Pan Gas separation by high‐flux, asymmetric hollow‐fiber membrane , 1986 .

[30]  K. Sirkar,et al.  An internally staged hollow-fiber permeator for gas separation , 1989 .

[31]  Joseph Haggin New Generation of Membranes Developed for Industrial Separations: Breakthroughs in development of membrane materials have led to commercialization of membrane separation systems for waste treatment, desalination, gas-mixture separations, other high-volume applications , 1988 .

[32]  T. Miyauchi,et al.  Comparison of Gas Membrane Separation Cascades Using Conventional Separation Cell and Two-Unit Separation Cells , 1978 .

[33]  Günter Schulz Gas separation in one- or two-step membrane processes☆ , 1985 .

[34]  S. A. Stern,et al.  HELIUM RECOVERY BY PERMEATION , 1965 .

[35]  S. A. Stern,et al.  Recycle and multimembrane permeators for gas separations , 1984 .

[36]  S. A. Stern,et al.  Separation of a helium‐methane mixture in permeators with two types of polymer membranes , 1986 .

[37]  S. Hwang,et al.  Compressible flow in permeable capillaries under deformation , 1978 .

[38]  H. Lonsdale The evolution of ultrathin synthetic membranes , 1987 .

[39]  S. R. Auvil,et al.  Asymptotic analysis of gas separation by a membrane module , 1988 .

[40]  Y. Kao,et al.  Dynamic modeling and simulation of simple membrane permeators , 1987 .

[41]  Robert Rautenbach,et al.  Simplified calculation of gas-permeation hollow-fiber modules for the separation of binary mixtures , 1986 .

[42]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[43]  Hajime Sato,et al.  Radioactive Rare Gas Separation Using a Separation Cell with Two Kinds of Membrane Differing in Gas Permeability Tendency , 1977 .

[44]  Rutherford Aris,et al.  On the limits of facilitated diffusion , 1989 .

[45]  R. Wakeman Progress in filtration and separation , 1979 .

[46]  William J. Koros,et al.  Simulation of a hollow-fiber gas separator: the effects of process and design variables , 1985 .

[47]  Udo Werner,et al.  New process developments in gas separation with membranes , 1982 .

[48]  Shihan Chen,et al.  A continuous membrane column model incorporating axial diffusion terms , 1986 .

[49]  S. A. Stern,et al.  Modeling of permeators with two different types of polymer membranes , 1985 .

[50]  Waldo A. Steiner,et al.  Separation of Gases by Fractional Permeation through Membranes , 1950 .

[51]  H. W. Habgood,et al.  Gas separation by permeation Part I. Calculation methods and parametric analysis , 1978 .

[52]  K. Sirkar,et al.  An experimental investigation of oxygen enrichment in a silicone capillary permeator with permeate recycle , 1987 .

[53]  C. Pan Gas separation by permeators with high‐flux asymmetric membranes , 1983 .