Constant Rank-Distance Sets of Hermitian Matrices and Partial Spreads in Hermitian Polar Spaces

In this paper we investigate partial spreads of $H(2n-1,q^2)$ through the related notion of partial spread sets of hermitian matrices, and the more general notion of constant rank-distance sets. We prove a tight upper bound on the maximum size of a linear constant rank-distance set of hermitian matrices over finite fields, and as a consequence prove the maximality of extensions of symplectic semifield spreads as partial spreads of $H(2n-1,q^2)$ . We prove upper bounds for constant rank-distance sets for even rank, construct large examples of these, and construct maximal partial spreads of $H(3,q^2)$ for a range of sizes.

[1]  I. Isaacs Character Theory of Finite Groups , 1976 .

[2]  Searching for maximal partial ovoids and spreads in generalized quadrangles , 2006 .

[3]  S. Shpectorov,et al.  A characterization of the association schemes of Hermitian forms , 1991 .

[4]  John Sheekey,et al.  On Rank Problems for Subspaces of Matrices over Finite Fields , 2012 .

[5]  John Sheekey,et al.  Rank properties of subspaces of symmetric and hermitian matrices over finite fields , 2011, Finite Fields Their Appl..

[6]  Olof Heden,et al.  Maximal partial spreads and the modular n-queen problem III , 1995, Discret. Math..

[7]  Frédéric Vanhove A geometric proof of the upper bound on the size of partial spreads in H(4n+1, q2) , 2011, Adv. Math. Commun..

[8]  Jean-Marie Goethals,et al.  Alternating Bilinear Forms over GF(q) , 1975, J. Comb. Theory A.

[9]  William M. Kantor,et al.  Commutative semifields and symplectic spreads , 2003 .

[10]  Philippe Delsarte,et al.  Bilinear Forms over a Finite Field, with Applications to Coding Theory , 1978, J. Comb. Theory A.

[11]  P. Dembowski,et al.  Planes of ordern with collineation groups of ordern2 , 1968 .

[12]  Joachim Rosenthal,et al.  Spread codes and spread decoding in network coding , 2008, 2008 IEEE International Symposium on Information Theory.

[14]  F. Vanhove Antidesigns and regularity of partial spreads in dual polar graphs , 2011 .

[15]  P. Delsarte,et al.  The Association Schemes of Coding Theory , 1975 .

[16]  M. Lavrauw,et al.  Finite Semifields and Galois Geometry ∗ , 2011 .

[17]  John J. Cannon,et al.  The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..

[18]  Leo Storme,et al.  A spectrum result on maximal partial ovoids of the generalized quadrangle Q(4, q), q even , 2010, Eur. J. Comb..

[19]  Jan De Beule,et al.  The maximum size of a partial spread in H(5, q2) is q3+1 , 2007, J. Comb. Theory, Ser. A.

[20]  Beniamino Segre,et al.  Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane , 1964 .

[21]  Joseph A. Thas,et al.  Old and new results on spreads and ovoids of finite classical polar spaces , 1992 .

[22]  Olof Heden,et al.  Maximal partial spreads and the modular n-queen problem II , 1995, Discret. Math..

[23]  Dennis Stanton,et al.  A Partially Ordered Set and q-Krawtchouk Polynomials , 1981, J. Comb. Theory, Ser. A.

[24]  J. Thas,et al.  Finite Generalized Quadrangles , 2009 .

[25]  Jan De Beule,et al.  Partial ovoids and partial spreads in hermitian polar spaces , 2008, Des. Codes Cryptogr..

[26]  Paul M. Terwilliger Kite-free distance-regular graphs , 1995, Eur. J. Comb..

[27]  P. Dembowski Finite geometries , 1997 .

[28]  Frank R. Kschischang,et al.  Subspace Codes , 2009, IMACC.

[29]  Leo Storme,et al.  Maximal partial line spreads of non-singular quadrics , 2014, Des. Codes Cryptogr..

[30]  Deirdre Luyckx On maximal partial spreads of H(2n+1, q2) , 2008, Discret. Math..

[31]  A. Neumaier,et al.  Distance Regular Graphs , 1989 .

[32]  John Sheekey,et al.  Subspaces of matrices with special rank properties , 2010 .

[33]  R. C. Bose,et al.  Classification and Analysis of Partially Balanced Incomplete Block Designs with Two Associate Classes , 1952 .

[34]  Albrecht Beutelspacher,et al.  Partial spreads in finite projective spaces and partial designs , 1975 .

[35]  K. Metsch,et al.  UBSTRUCTURES OF FINITE CLASSICAL POLAR SPACES , 2010 .

[36]  Antonio Cossidente,et al.  Complete Spans on Hermitian Varieties , 2003, Des. Codes Cryptogr..

[37]  Navin M. Singhi,et al.  Projective planes I , 2010, Eur. J. Comb..