Sea-ice-free Arctic during the Last Interglacial supports fast future loss

[1]  L. Sime,et al.  Machine dependence and reproducibility for coupled climate simulations: the HadGEM3-GC3.1 CMIP Preindustrial simulation , 2020, Geoscientific Model Development.

[2]  K. Taylor,et al.  Causes of Higher Climate Sensitivity in CMIP6 Models , 2020, Geophysical Research Letters.

[3]  T. Andrews,et al.  Forcings, Feedbacks, and Climate Sensitivity in HadGEM3‐GC3.1 and UKESM1 , 2019, Journal of Advances in Modeling Earth Systems.

[4]  M. Mills,et al.  High Climate Sensitivity in the Community Earth System Model Version 2 (CESM2) , 2019, Geophysical Research Letters.

[5]  H. Douville,et al.  Evaluation of CMIP6 DECK Experiments With CNRM‐CM6‐1 , 2019, Journal of Advances in Modeling Earth Systems.

[6]  Mohamed Zerroukat,et al.  The Met Office Unified Model Global Atmosphere 7.0/7.1 and JULES Global Land 7.0 configurations , 2011, Geoscientific Model Development.

[7]  R. Wood,et al.  Journal of Advances in Modeling Earth Systems Preindustrial Control Simulations With HadGEM 3-GC 3 . 1 for CMIP 6 , 2019 .

[8]  R. Wood,et al.  Preindustrial Control Simulations With HadGEM3‐GC3.1 for CMIP6 , 2018, Journal of Advances in Modeling Earth Systems.

[9]  Xiaohong Liu,et al.  The Beijing Climate Center Climate System Model (BCC-CSM): the main progress from CMIP5 to CMIP6 , 2018, Geoscientific Model Development.

[10]  S. Belt Source-specific biomarkers as proxies for Arctic and Antarctic sea ice , 2018, Organic Geochemistry.

[11]  P. Valdes,et al.  Simulating the Last Interglacial Greenland stable water isotope peak: The role of Arctic sea ice changes , 2018, Quaternary Science Reviews.

[12]  Dai Yamazaki,et al.  Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6 , 2018, Geoscientific Model Development.

[13]  D. N. Walters,et al.  The Met Office Global Coupled Model 3.0 and 3.1 (GC3.0 and GC3.1) Configurations , 2017 .

[14]  Edward W. Blockley,et al.  The sea ice model component of HadGEM3-GC3.1 , 2017 .

[15]  F. Niessen,et al.  Arctic Ocean sea ice cover during the penultimate glacial and the last interglacial , 2017, Nature Communications.

[16]  B. Otto‐Bliesner,et al.  Critical evaluation of climate syntheses to benchmark CMIP6/PMIP4 127 ka Last Interglacial simulations in the high-latitude regions , 2017 .

[17]  P. Clark,et al.  Regional and global sea-surface temperatures during the last interglaciation , 2017, Science.

[18]  Markus Gross,et al.  The Met Office Unified Model Global Atmosphere 6.0/6.1 and JULES Global Land 6.0/6.1 configurations , 2017 .

[19]  W. Lipscomb,et al.  The PMIP4 contribution to CMIP6 – Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations , 2016 .

[20]  Brian C. O'Neill,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[21]  I. Eisenman,et al.  Sea Ice Trends in Climate Models Only Accurate in Runs with Biased Global Warming , 2016, 1606.08519.

[22]  J. Stroeve,et al.  Insights on past and future sea-ice evolution from combining observations and models , 2015 .

[23]  V. Masson‐Delmotte,et al.  Sequence of events from the onset to the demise of the Last Interglacial: Evaluating strengths and limitations of chronologies used in climatic archives , 2015 .

[24]  S. Rahmstorf,et al.  Sea-level rise due to polar ice-sheet mass loss during past warm periods , 2015, Science.

[25]  R. Stein,et al.  MIS 3 to MIS 1 temporal and LGM spatial variability in Arctic Ocean sea ice cover: Reconstruction from biomarkers , 2015 .

[26]  T. L. Rasmussen,et al.  Temporal and spatial structure of multi-millennial temperature changes at high latitudes during the Last Interglacial , 2014 .

[27]  David Schröder,et al.  September Arctic sea-ice minimum predicted by spring melt-pond fraction , 2014 .

[28]  J. Müller,et al.  The Arctic sea ice biomarker IP25: a review of current understanding, recommendations for future research and applications in palaeo sea ice reconstructions , 2013 .

[29]  Nan Rosenbloom,et al.  How warm was the last interglacial? New model–data comparisons , 2013, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[30]  V. Masson‐Delmotte,et al.  Warm climate isotopic simulations: what do we learn about interglacial signals in Greenland ice cores? , 2013 .

[31]  T. Stocker,et al.  SBSTA-IPCC Special Event Climate Change 2013: The Physical Science Basis , 2013 .

[32]  B. Otto‐Bliesner,et al.  A multi-model assessment of last interglacial temperatures , 2012 .

[33]  L. Kaleschke,et al.  Exceptional melt pond occurrence in the years 2007 and 2011 on the Arctic sea ice revealed from MODIS satellite data , 2012 .

[34]  Elizabeth C. Hunke,et al.  Impact of melt ponds on Arctic sea ice simulations from 1990 to 2007 , 2012 .

[35]  Andrew Gettelman,et al.  The Evolution of Climate Sensitivity and Climate Feedbacks in the Community Atmosphere Model , 2012 .

[36]  R. Knutti,et al.  September Arctic sea ice predicted to disappear near 2°C global warming above present , 2011 .

[37]  J. Jouzel,et al.  Sensitivity of interglacial Greenland temperature and δ 18 O: ice core data, orbital and increased CO 2 climate simulations , 2011 .

[38]  W. Briggs,et al.  Quaternary Sea-ice history in the Arctic Ocean based on a new Ostracode sea-ice proxy , 2010 .

[39]  C. Turney,et al.  Does the Agulhas Current amplify global temperatures during super‐interglacials? , 2010 .

[40]  E. Sellén,et al.  Sediment record from the western Arctic Ocean with an improved Late Quaternary age resolution : HOTRAX core HLY0503-8JPC, Mendeleev Ridge , 2009 .

[41]  Princeton University.,et al.  Global and local sea level during the Last Interglacial: A probabilistic assessment , 2009, 0903.0752.

[42]  G. Madec NEMO ocean engine , 2008 .

[43]  Kathleen F. Jones,et al.  Increasing solar heating of the Arctic Ocean and adjacent seas, 1979–2005: Attribution and role in the ice‐albedo feedback , 2007 .

[44]  N. Nørgaard-Pedersen,et al.  Reduced sea ice concentrations in the Arctic Ocean during the last interglacial period revealed by sediment cores off northern Greenland , 2007 .

[45]  S. Solomon The Physical Science Basis : Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[46]  Masson-Delmotte,et al.  The Physical Science Basis , 2007 .

[47]  T. Wilbanks,et al.  Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change , 2007 .

[48]  Niels Reeh,et al.  Last interglacial Arctic warmth confirms polar amplification of climate change , 2006 .

[49]  J. Overpeck,et al.  Simulating Arctic Climate Warmth and Icefield Retreat in the Last Interglaciation , 2006, Science.

[50]  U. Cubasch,et al.  A model‐data comparison of European temperatures in the Eemian interglacial , 2005 .

[51]  Jonathan M. Gregory,et al.  A new method for diagnosing radiative forcing and climate sensitivity , 2004 .

[52]  Peter M. Cox,et al.  Description of the "TRIFFID" Dynamic Global Vegetation Model , 2001 .

[53]  W Ogana,et al.  Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change , 2001 .

[54]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[55]  Richard Harding,et al.  A canopy conductance and photosynthesis model for use in a GCM land surface scheme , 1998 .

[56]  J. Brigham‐Grette,et al.  Emergent Marine Record and Paleoclimate of the Last Interglaciation along the Northwest Alaskan Coast , 1995, Quaternary Research.

[57]  André Berger,et al.  Insolation values for the climate of the last 10 , 1991 .

[58]  K. Shine,et al.  Intergovernmental panel on Climate change (IPCC),in encyclopedia of Enviroment and society,Vol.3 , 2007 .