Intensified solar thermochemical CO2 splitting over iron-based redox materials via perovskite-mediated dealloying-exsolution cycles

[1]  A. Steinfeld,et al.  Reversible Phase Transformations in Novel Ce‐Substituted Perovskite Oxide Composites for Solar Thermochemical Redox Splitting of CO2 , 2021, Advanced Energy Materials.

[2]  Liangliang Zhu,et al.  Highly efficient reduction of O2-containing CO2 via chemical looping based on perovskite nanocomposites , 2020 .

[3]  Tak H. Kim,et al.  Experimental demonstration of vanadium-doped nanostructured ceria for enhanced solar thermochemical syngas production , 2020 .

[4]  Xiujian Zhao,et al.  Formation of NiCo Alloy Nanoparticles on Co Doped Al2O3 Leads to High Fuel Production Rate, Large Light‐to‐Fuel Efficiency, and Excellent Durability for Photothermocatalytic CO2 Reduction , 2020, Advanced Energy Materials.

[5]  Zachary D. Hood,et al.  Oxygen Exchange in Dual-phase La0.65Sr0.35MnO3-CeO2 Composites for Solar Thermochemical Fuel Production. , 2020, ACS applied materials & interfaces.

[6]  Xiaodong Wang,et al.  Identifying the Role of A-Site Cations in Modulating Oxygen Capacity of Iron-Based Perovskite for Enhanced Chemical Looping Methane-to-Syngas Conversion , 2020 .

[7]  Jinlong Gong,et al.  FeO6 Octahedral Distortion Activates Lattice Oxygen in Perovskite Ferrite for Methane Partial Oxidation Coupled with CO2-Splitting. , 2020, Journal of the American Chemical Society.

[8]  Jinhua Ye,et al.  Coupling of Solar Energy and Thermal Energy for Carbon Dioxide Reduction: Status and Prospects. , 2020, Angewandte Chemie.

[9]  M. Santarelli,et al.  Assessment of integration of methane-reduced ceria chemical looping CO2/H2O splitting cycle to an oxy-fired power plant , 2020 .

[10]  W. Chueh,et al.  High-capacity thermochemical CO2 dissociation using iron-poor ferrites , 2020 .

[11]  Hongguang Jin,et al.  Thermodynamic analysis of isothermal CO2 splitting and CO2-H2O co-splitting for solar fuel production , 2020 .

[12]  T. Grande,et al.  Effects of Oxygen Mobility in La–Fe-Based Perovskites on the Catalytic Activity and Selectivity of Methane Oxidation , 2020 .

[13]  S. Assabumrungrat,et al.  Ordered mesoporous Ni/La2O3 catalysts with interfacial synergism towards CO2 activation in dry reforming of methane , 2019 .

[14]  Fanxing Li,et al.  Modified Ceria for “Low‐Temperature” CO2 Utilization: A Chemical Looping Route to Exploit Industrial Waste Heat , 2019, Advanced Energy Materials.

[15]  Xiujian Zhao,et al.  High light-to-fuel efficiency and CO2 reduction rates achieved on a unique nanocomposite of Co/Co doped Al2O3 nanosheets with UV-vis-IR irradiation , 2019, Energy & Environmental Science.

[16]  Jonathan A. Fan,et al.  Near 100% CO selectivity in nanoscaled iron-based oxygen carriers for chemical looping methane partial oxidation , 2019, Nature Communications.

[17]  Jun Kyu Kim,et al.  Growth Kinetics of Individual Co Particles Ex-solved on SrTi0.75Co0.25O3-δ Polycrystalline Perovskite Thin Films. , 2019, Journal of the American Chemical Society.

[18]  Xiaodong Wang,et al.  Synergy of the catalytic activation on Ni and the CeO2–TiO2/Ce2Ti2O7 stoichiometric redox cycle for dramatically enhanced solar fuel production , 2019, Energy & Environmental Science.

[19]  M. Fan,et al.  Enhanced lattice oxygen reactivity over Fe2O3/Al2O3 redox catalyst for chemical-looping dry (CO2) reforming of CH4: Synergistic La-Ce effect , 2018, Journal of Catalysis.

[20]  Hao Yu,et al.  Calcium cobaltate: a phase-change catalyst for stable hydrogen production from bio-glycerol , 2018 .

[21]  J. Kuhn,et al.  Earth abundant perovskite oxides for low temperature CO2 conversion , 2018 .

[22]  J. Kuhn,et al.  Enhanced CO2 Conversion to CO by Silica-Supported Perovskite Oxides at Low Temperatures , 2018 .

[23]  Xiaodong Wang,et al.  La‐hexaaluminate for synthesis gas generation by Chemical Looping Partial Oxidation of Methane Using CO2 as Sole Oxidant , 2018 .

[24]  B. Liu,et al.  High-Performance Ni–Fe Redox Catalysts for Selective CH4 to Syngas Conversion via Chemical Looping , 2018 .

[25]  G. Karagiannakis,et al.  Thermochemical H 2 O and CO 2 splitting redox cycles in a NiFe 2 O 4 structured redox reactor: Design, development and experiments in a high flux solar simulator , 2017 .

[26]  L. Jalowiecki-Duhamel,et al.  Ni/CeO2 based catalysts as oxygen vectors for the chemical looping dry reforming of methane for syngas production , 2017 .

[27]  A. Steinfeld,et al.  Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency , 2017 .

[28]  K. Zhao,et al.  Investigation on reactivity of iron nickel oxides in chemical looping dry reforming , 2016 .

[29]  S. Bhavsar,et al.  Iron–Nickel Alloys for Carbon Dioxide Activation by Chemical Looping Dry Reforming of Methane , 2016 .

[30]  K. Zhao,et al.  Perovskite-type oxides LaFe1−xCoxO3 for chemical looping steam methane reforming to syngas and hydrogen co-production , 2016 .

[31]  J. Kuhn,et al.  Isothermal reverse water gas shift chemical looping on La0.75Sr0.25Co(1−Y)FeYO3 perovskite-type oxides , 2015 .

[32]  Can Li,et al.  Two-step thermochemical cycles for CO2 splitting on Zr-doped cobalt ferrite supported on silica , 2015 .

[33]  C. Detavernier,et al.  Catalyst-assisted chemical looping for CO2 conversion to CO , 2015 .

[34]  Jane H. Davidson,et al.  Efficient splitting of CO2 in an isothermal redox cycle based on ceria , 2014 .

[35]  J. Kuhn,et al.  Carbon Dioxide Conversion by Reverse Water–Gas Shift Chemical Looping on Perovskite-Type Oxides , 2014 .

[36]  S. Haile,et al.  High-temperature isothermal chemical cycling for solar-driven fuel production. , 2013, Physical chemistry chemical physics : PCCP.

[37]  Xinhua Liang,et al.  Efficient Generation of H2 by Splitting Water with an Isothermal Redox Cycle , 2013, Science.

[38]  W. Chueh,et al.  Sr- and Mn-doped LaAlO3-δ for solar thermochemical H2 and CO production , 2013 .

[39]  C. Detavernier,et al.  CeO2-modified Fe2O3 for CO2 utilization via chemical looping , 2013 .

[40]  Nathan P. Siegel,et al.  Factors Affecting the Efficiency of Solar Driven Metal Oxide Thermochemical Cycles , 2013 .

[41]  Fanxing Li,et al.  Iron Oxide with Facilitated O2– Transport for Facile Fuel Oxidation and CO2 Capture in a Chemical Looping Scheme , 2013 .

[42]  Ulrich Vogt,et al.  Solar Thermochemical CO2 Splitting Utilizing a Reticulated Porous Ceria Redox System , 2012 .

[43]  M. Romero,et al.  Concentrating solar thermal power and thermochemical fuels , 2012 .

[44]  Alan W. Weimer,et al.  CoFe2O4 on a porous Al2O3 nanostructure for solar thermochemical CO2 splitting , 2012 .

[45]  De Chen,et al.  Chemical looping methane partial oxidation: The effect of the crystal size and O content of LaFeO3 , 2012 .

[46]  A. Thursfield,et al.  A chemical looping process for hydrogen production using iron-containing perovskites , 2011 .

[47]  Todd H. Gardner,et al.  Carbon capture and utilization via chemical looping dry reforming , 2011 .

[48]  Christos T. Maravelias,et al.  Methanol production from CO2 using solar-thermal energy: process development and techno-economic analysis , 2011 .

[49]  Liang-Shih Fan,et al.  Role of metal oxide support in redox reactions of iron oxide for chemical looping applications: experiments and density functional theory calculations , 2011 .

[50]  L. Fan,et al.  Ionic diffusion in the oxidation of iron—effect of support and its implications to chemical looping applications , 2011 .

[51]  W. Chueh,et al.  High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria , 2010, Science.

[52]  S. D. Kim,et al.  Hydrogen production from two-step steam methane reforming in a fluidized bed reactor , 2009 .

[53]  Peter G. Loutzenhiser,et al.  CO2 Splitting via Two-Step Solar Thermochemical Cycles with Zn/ZnO and FeO/Fe3O4 Redox Reactions II: Kinetic Analysis , 2008 .

[54]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[55]  G. Henkelman,et al.  Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points , 2000 .

[56]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[57]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[58]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[59]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[60]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[61]  V. P. Itkin,et al.  The Fe-Ni (iron-nickel) system , 1991 .

[62]  A. Dalvi,et al.  A review of the diffusion path concept and its application to the high-temperature oxidation of binary alloys , 1972 .

[63]  F. Pettit,et al.  The mechanism of oxidation of iron in carbon monoxide-carbon dioxide mixtures , 1960 .

[64]  S. Haile,et al.  Outstanding Properties and Performance of CaTi0.5Mn0.5O3–δ for Solar-Driven Thermochemical Hydrogen Production , 2021 .

[65]  G. Veser,et al.  Physical mixtures as simple and efficient alternative to alloy carriers in chemical looping processes , 2017 .

[66]  Christos T. Maravelias,et al.  A general framework for the assessment of solar fuel technologies , 2015 .