Sensitivity of formaldehyde (HCHO) column measurements from a geostationary satellite to aerosol temporal variation in East Asia

We examine upcoming geostationary satellite observations of formaldehyde 15 (HCHO) columns in East Asia and the retrieval sensitivity to the temporal variation of air mass factor (AMF) considering the presence of aerosols. Observation system simulation experiments (OSSE) were conducted using a combination of a global 3-D chemical transport model (GEOS-Chem), a radiative transfer model (VLIDORT), and a HCHO retrieval algorithm developed for Geostationary Environment Monitoring Spectrometer (GEMS), 20 which will be launched in 2019. Application of the retrieval algorithm to simulated hourly radiances yields the retrieved HCHO column concentrations, which are then compared with the GEOS-Chem HCHO columns as a true value for the evaluation of the retrieval algorithm. In order to examine the retrieval sensitivity to the temporal variation of AMF, we compare the retrieved HCHO columns using monthly versus hourly AMF values and find that the HCHO 25 vertical columns with hourly AMF are in better agreement with the true values, relative to those with monthly AMF. The differences between hourly and monthly AMF range from - 0.70 to 0.73 in absolute value and are mainly caused by temporal changes of aerosol chemical composition: scattering aerosol enhances AMF, whereas absorbing aerosol reduces it. The temporal variations of AMF caused by aerosols increase and decrease HCHO VCDs by 84% 30 and 34%, respectively, compared to HCHO VCDs using monthly AMF. We apply our

[1]  I. D. Smedt,et al.  Validation of OMI, GOME-2A and GOME-2B tropospheric NO2, SO2 and HCHO products using MAX-DOAS observations from 2011 to 2014 in Wuxi, China , 2016 .

[2]  K. F. Boersma,et al.  OMI tropospheric NO 2 air mass factors over South America: effects of biomass burning aerosols , 2015 .

[3]  Xiong Liu,et al.  Smithsonian Astrophysical Observatory Ozone Mapping and Profiler Suite (SAO OMPS) formaldehyde retrieval , 2015 .

[4]  J. Veefkind,et al.  Impact of aerosols on the OMI tropospheric NO 2 retrievals over industrialized regions: how accurate is the aerosol correction of cloud-free scenes via a simple cloud model? , 2015 .

[5]  Can Li,et al.  A new method for global retrievals of HCHO total columns from the Suomi National Polar‐orbiting Partnership Ozone Mapping and Profiler Suite , 2015 .

[6]  Xiong Liu,et al.  Updated Smithsonian Astrophysical Observatory Ozone Monitoring Instrument (SAO OMI) formaldehyde retrieval , 2015 .

[7]  D. Jacob,et al.  Anthropogenic emissions of highly reactive volatile organic compounds in eastern Texas inferred from oversampling of satellite (OMI) measurements of HCHO columns , 2014 .

[8]  Hiren Jethva,et al.  Global assessment of OMI aerosol single‐scattering albedo using ground‐based AERONET inversion , 2014 .

[9]  Hiren Jethva,et al.  Assessment of OMI near‐UV aerosol optical depth over land , 2014 .

[10]  Omar Torres,et al.  Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations , 2013 .

[11]  Martin Wild,et al.  Isoprene emissions over Asia 1979-2012: Impact of climate and land-use changes , 2013 .

[12]  R. Park,et al.  Effects of the meteorological variability on regional air quality in East Asia , 2013 .

[13]  D P Edwards,et al.  Tropospheric emissions: monitoring of pollution (TEMPO) , 2012, Optics & Photonics - Optical Engineering + Applications.

[14]  Nicolas Theys,et al.  Improved retrieval of global tropospheric formaldehyde columns from GOME-2/MetOp-A addressing noise reduction and instrumental degradation issues , 2012 .

[15]  F. Keutsch,et al.  Observations of glyoxal and formaldehyde as metrics for the anthropogenic impact on rural photochemistry , 2012 .

[16]  Steffen Beirle,et al.  Tropospheric No 2 Vertical Column Densities over Beijing Printer-friendly Version Interactive Discussion Atmospheric Chemistry and Physics Discussions Tropospheric No 2 Vertical Column Densities over Beijing: Results of the First Three-years of Ground-based Max-doas Measurements (2008–2011) and Sate , 2022 .

[17]  I. D. Smedt,et al.  Characterisation of GOME-2 formaldehyde retrieval sensitivity , 2012 .

[18]  D. Jacob,et al.  Isoprene emissions in Africa inferred from OMI observations of formaldehyde columns. , 2012, Atmospheric chemistry and physics.

[19]  Adrian Doicu,et al.  Sixteen years of GOME/ERS‐2 total ozone data: The new direct‐fitting GOME Data Processor (GDP) version 5—Algorithm description , 2012 .

[20]  Steffen Beirle,et al.  Estimation of NO x emissions from Delhi using Car MAX-DOAS observations and comparison with OMI satellite data , 2011 .

[21]  Michel Van Roozendael,et al.  Biomass burning emission estimates inferred from satellite column measurements of HCHO: Sensitivity to co‐emitted aerosol and injection height , 2011 .

[22]  Johannes Orphal,et al.  Revised ultraviolet absorption cross sections of H2CO for the HITRAN database , 2011 .

[23]  Trissevgeni Stavrakou,et al.  Trend detection in satellite observations of formaldehyde tropospheric columns , 2010 .

[24]  Nickolay A. Krotkov,et al.  Retrieval of vertical columns of sulfur dioxide from SCIAMACHY and OMI: Air mass factor algorithm development, validation, and error analysis , 2009 .

[25]  G. Carmichael,et al.  Asian emissions in 2006 for the NASA INTEX-B mission , 2009 .

[26]  Trissevgeni Stavrakou,et al.  Global emissions of non-methane hydrocarbons deduced from SCIAMACHY formaldehyde columns through 2003-2006 , 2009 .

[27]  A. Vandaele,et al.  Fourier transform measurements of SO2 absorption cross sections: I. Temperature dependence in the 24 000-29 000 cm-1 (345-420 nm) region , 2009 .

[28]  J. Burrows,et al.  SCIAMACHY formaldehyde observations: constraint for isoprene emission estimates over Europe? , 2008 .

[29]  Henk Eskes,et al.  Twelve years of global observations of formaldehyde in the troposphere using GOME and SCIAMACHY sensors , 2008 .

[30]  Piet Stammes,et al.  Effective cloud fractions from the Ozone Monitoring Instrument: Theoretical framework and validation , 2008 .

[31]  Barbara Barletta,et al.  Space‐based formaldehyde measurements as constraints on volatile organic compound emissions in east and south Asia and implications for ozone , 2007 .

[32]  Robert J. D. Spurr,et al.  VLIDORT: A linearized pseudo-spherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media , 2006 .

[33]  P. Palmer,et al.  Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature) , 2006 .

[34]  J. Burrows,et al.  Simultaneous global observations of glyoxal and formaldehyde from space , 2006 .

[35]  Christine Wiedinmyer,et al.  Quantifying the Seasonal and Interannual Variability of North American Isoprene Emissions using Satellite Observations of Formaldehyde Column , 2005 .

[36]  K. Chance,et al.  Constraining global isoprene emissions with Global Ozone Monitoring Experiment (GOME) formaldehyde column measurements , 2005 .

[37]  Kelly Chance,et al.  Preliminary results for HCHO and BrO from the EOS-Aura Ozone Monitoring Instrument , 2004, SPIE Asia-Pacific Remote Sensing.

[38]  Henk Eskes,et al.  Error analysis for tropospheric NO2 retrieval from space , 2004 .

[39]  Thomas P. Kurosu,et al.  Global inventory of nitrogen oxide emissions constrained by space‐based observations of NO2 columns , 2003 .

[40]  Dorian S. Abbot,et al.  Seasonal and interannual variability of North American isoprene emissions as determined by formaldehyde column measurements from space , 2003 .

[41]  Thomas P. Kurosu,et al.  Mapping isoprene emissions over North America using formaldehyde column observations from space , 2003 .

[42]  James F. Gleason,et al.  An improved retrieval of tropospheric nitrogen dioxide from GOME , 2002 .

[43]  Oleg Dubovik,et al.  Combined use of satellite and surface observations to infer the imaginary part of refractive index of Saharan dust , 2002 .

[44]  D. Jacob,et al.  Global modeling of tropospheric chemistry with assimilated meteorology : Model description and evaluation , 2001 .

[45]  Robert J. D. Spurr,et al.  Air-mass factor formulation for spectroscopic measurements from satellites: application to formaldeh , 2001 .

[46]  Thomas P. Kurosu,et al.  Satellite observations of formaldehyde over North America from GOME , 2000 .

[47]  Michael I. Mishchenko,et al.  Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces , 1999 .

[48]  P. Koepke,et al.  Optical Properties of Aerosols and Clouds: The Software Package OPAC , 1998 .

[49]  K. Chance,et al.  Ring effect studies: Rayleigh scattering, including molecular parameters for rotational Raman scattering, and the Fraunhofer spectrum. , 1997, Applied optics.

[50]  J. Brion,et al.  Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence , 1995 .

[51]  J. Brion,et al.  Ozone UV spectroscopy I: Absorption cross-sections at room temperature , 1992 .