Mitochondrial function as a therapeutic target in heart failure

[1]  Quincy A. Hathaway,et al.  Role of microRNA in metabolic shift during heart failure. , 2017, American journal of physiology. Heart and circulatory physiology.

[2]  Javed Butler,et al.  Cardiac Myosin Activators in Systolic Heart Failure: More Friend than Foe? , 2016, Current Cardiology Reports.

[3]  B. Pieske,et al.  Novel pathomechanisms of cardiomyocyte dysfunction in a model of heart failure with preserved ejection fraction , 2016, European journal of heart failure.

[4]  D. Bernstein,et al.  Mitochondrial remodeling: Rearranging, recycling, and reprogramming. , 2016, Cell calcium.

[5]  M. Söderström,et al.  Intramyocardial injection of SERCA2a‐expressing lentivirus improves myocardial function in doxorubicin‐induced heart failure , 2016, The journal of gene medicine.

[6]  Alan Brown,et al.  Organization and Regulation of Mitochondrial Protein Synthesis. , 2016, Annual review of biochemistry.

[7]  C. Hoppel,et al.  Mitochondrial Metabolism in Aging Heart. , 2016, Circulation research.

[8]  Sanjiv J. Shah,et al.  Developing New Treatments for Heart Failure: Focus on the Heart , 2016, Circulation. Heart failure.

[9]  Q. Lv,et al.  Improved systolic function of rat cardiocytes during heart failure by overexpression of SERCA2a. , 2016, European review for medical and pharmacological sciences.

[10]  Piotr Ponikowski,et al.  Acute Treatment With Omecamtiv Mecarbil to Increase Contractility in Acute Heart Failure: The ATOMIC-AHF Study. , 2016, Journal of the American College of Cardiology.

[11]  Akshay S. Desai,et al.  Calcium upregulation by percutaneous administration of gene therapy in patients with cardiac disease (CUPID 2): a randomised, multinational, double-blind, placebo-controlled, phase 2b trial , 2016, The Lancet.

[12]  D. Bers,et al.  Individual Cardiac Mitochondria Undergo Rare Transient Permeability Transition Pore Openings. , 2016, Circulation research.

[13]  K. Margulies,et al.  Evidence for Intramyocardial Disruption of Lipid Metabolism and Increased Myocardial Ketone Utilization in Advanced Human Heart Failure , 2016, Circulation.

[14]  R. Tian,et al.  Ketones Step to the Plate: A Game Changer for Metabolic Remodeling in Heart Failure? , 2016, Circulation.

[15]  Souheila Hachem,et al.  Chronic Therapy With Elamipretide (MTP-131), a Novel Mitochondria-Targeting Peptide, Improves Left Ventricular and Mitochondrial Function in Dogs With Advanced Heart Failure , 2016, Circulation. Heart failure.

[16]  C. Piantadosi,et al.  Mitochondrial Quality Control as a Therapeutic Target , 2016, Pharmacological Reviews.

[17]  Edgar B. Smith,et al.  An Update and Review , 2016 .

[18]  B. O’Rourke,et al.  Impaired mitochondrial network excitability in failing guinea-pig cardiomyocytes. , 2016, Cardiovascular research.

[19]  Xianlin Han,et al.  Bendavia restores mitochondrial energy metabolism gene expression and suppresses cardiac fibrosis in the border zone of the infarcted heart. , 2015, Life sciences.

[20]  W. Frontera,et al.  Mitochondria-targeted antioxidant preserves contractile properties and mitochondrial function of skeletal muscle in aged rats , 2015, Oncotarget.

[21]  I. Édes,et al.  The novel cardiac myosin activator omecamtiv mecarbil increases the calcium sensitivity of force production in isolated cardiomyocytes and skeletal muscle fibres of the rat , 2015, British journal of pharmacology.

[22]  P. Lipp,et al.  Reversal of Mitochondrial Transhydrogenase Causes Oxidative Stress in Heart Failure. , 2015, Cell metabolism.

[23]  Andrew J. Sauer,et al.  "Targeting the Heart" in Heart Failure: Myocardial Recovery in Heart Failure With Reduced Ejection Fraction. , 2015, JACC. Heart failure.

[24]  J. Dyck,et al.  Therapeutic potential of resveratrol in heart failure , 2015, Annals of the New York Academy of Sciences.

[25]  A. Gavazzi,et al.  Heart failure at the crossroads: moving beyond blaming stakeholders to targeting the heart , 2015, European journal of heart failure.

[26]  C. D. dos Remedios,et al.  Molecular effects of the myosin activator omecamtiv mecarbil on contractile properties of skinned myocardium lacking cardiac myosin binding protein-C. , 2015, Journal of molecular and cellular cardiology.

[27]  G. Lopaschuk,et al.  Myocardial Energy Substrate Metabolism in Heart Failure : from Pathways to Therapeutic Targets. , 2015, Current pharmaceutical design.

[28]  M. Vaduganathan,et al.  Contemporary Drug Development in Heart Failure: Call for Hemodynamically Neutral Therapies. , 2015, Circulation. Heart failure.

[29]  T. Myrmel,et al.  Myosin Activator Omecamtiv Mecarbil Increases Myocardial Oxygen Consumption and Impairs Cardiac Efficiency Mediated by Resting Myosin ATPase Activity , 2015, Circulation. Heart failure.

[30]  L. Kirshenbaum,et al.  Mitochondrial dynamics: Orchestrating the journey to advanced age. , 2015, Journal of molecular and cellular cardiology.

[31]  G. Dorn,et al.  How mitochondrial dynamism orchestrates mitophagy. , 2015, Circulation research.

[32]  J. C. Belmonte,et al.  Selective Elimination of Mitochondrial Mutations in the Germline by Genome Editing , 2015, Cell.

[33]  D. DeMets,et al.  Cardiovascular drug development: is it dead or just hibernating? , 2015, Journal of the American College of Cardiology.

[34]  R. Hajjar,et al.  Altered myocardial calcium cycling and energetics in heart failure--a rational approach for disease treatment. , 2015, Cell metabolism.

[35]  G. Dorn,et al.  The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. , 2015, Circulation research.

[36]  A. Shah,et al.  Mitochondrial dysfunction and oxidative stress in CHF , 2014 .

[37]  B. Greenberg,et al.  Safety and tolerability of omecamtiv mecarbil during exercise in patients with ischemic cardiomyopathy and angina. , 2015, JACC. Heart failure.

[38]  B. Polster,et al.  Idebenone and neuroprotection: antioxidant, pro-oxidant, or electron carrier? , 2015, Journal of Bioenergetics and Biomembranes.

[39]  J. Marín-García,et al.  Mitochondrial oxidative metabolism and uncoupling proteins in the failing heart , 2015, Heart Failure Reviews.

[40]  W. Frontera,et al.  Mitochondria-targeted ROS scavenger improves post-ischemic recovery of cardiac function and attenuates mitochondrial abnormalities in aged rats. , 2014, Journal of molecular and cellular cardiology.

[41]  F. Rosenfeldt,et al.  The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. , 2014, JACC. Heart failure.

[42]  H. Szeto,et al.  Serendipity and the Discovery of Novel Compounds That Restore Mitochondrial Plasticity , 2014, Clinical pharmacology and therapeutics.

[43]  Edward T Chouchani,et al.  Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS , 2014, Nature.

[44]  Rick B. Vega,et al.  Energy Metabolic Reprogramming in the Hypertrophied and Early Stage Failing Heart: A Multisystems Approach , 2014, Circulation. Heart failure.

[45]  E. Anderson,et al.  The “Goldilocks Zone” from a redox perspective—Adaptive vs. deleterious responses to oxidative stress in striated muscle , 2014, Front. Physiol..

[46]  C. Sucharov,et al.  Dysregulation of cardiolipin biosynthesis in pediatric heart failure. , 2014, Journal of molecular and cellular cardiology.

[47]  L. Lerman,et al.  Mitochondrial protection restores renal function in swine atherosclerotic renovascular disease. , 2014, Cardiovascular research.

[48]  M. Sánchez-Niño,et al.  Mitochondria-targeted therapies for acute kidney injury , 2014, Expert Reviews in Molecular Medicine.

[49]  M. Gheorghiade,et al.  Molecular and Cellular Basis of Viable Dysfunctional Myocardium , 2014, Circulation. Heart failure.

[50]  C. Baines,et al.  A new twist on an old idea part 2: cyclosporine preserves normal mitochondrial but not cardiomyocyte function in mini‐swine with compensated heart failure , 2014, Physiological reports.

[51]  G. Dorn,et al.  Super-Suppression of Mitochondrial Reactive Oxygen Species Signaling Impairs Compensatory Autophagy in Primary Mitophagic Cardiomyopathy , 2014, Circulation research.

[52]  V. Giorgio,et al.  Channel Formation by Yeast F-ATP Synthase and the Role of Dimerization in the Mitochondrial Permeability Transition*♦ , 2014, The Journal of Biological Chemistry.

[53]  Ping Chen,et al.  Catechin ameliorates cardiac dysfunction in rats with chronic heart failure by regulating the balance between Th17 and Treg cells , 2014, Inflammation Research.

[54]  H. Szeto,et al.  Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis , 2014, British journal of pharmacology.

[55]  G. Lopaschuk,et al.  Malonyl CoA: A promising target for the treatment of cardiac disease , 2014, IUBMB life.

[56]  L. Liaudet,et al.  Pathophysiological mechanisms of catecholamine and cocaine-mediated cardiotoxicity , 2014, Heart Failure Reviews.

[57]  L. Lerman,et al.  Mitochondrial targeted peptides attenuate residual myocardial damage after reversal of experimental renovascular hypertension , 2014, Journal of hypertension.

[58]  P. Neufer,et al.  Reduction of Early Reperfusion Injury With the Mitochondria-Targeting Peptide Bendavia , 2014, Journal of cardiovascular pharmacology and therapeutics.

[59]  L. Kirshenbaum,et al.  Regulation of mitochondrial dynamics and cell fate. , 2014, Circulation journal : official journal of the Japanese Circulation Society.

[60]  S. Shaikh,et al.  Mitochondrial inner membrane lipids and proteins as targets for decreasing cardiac ischemia/reperfusion injury. , 2013, Pharmacology & therapeutics.

[61]  R. E. Hughes,et al.  Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. , 2013, Free radical biology & medicine.

[62]  M. L. Genova,et al.  Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. , 2013, Antioxidants & redox signaling.

[63]  M. Drazner,et al.  2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. , 2013, Journal of the American College of Cardiology.

[64]  G. Perkins,et al.  (-)-Epicatechin rich cocoa mediated modulation of oxidative stress regulators in skeletal muscle of heart failure and type 2 diabetes patients. , 2013, International journal of cardiology.

[65]  T. Marwick,et al.  Effect of If-channel inhibition on hemodynamic status and exercise tolerance in heart failure with preserved ejection fraction: a randomized trial. , 2013, Journal of the American College of Cardiology.

[66]  Michael P. Siegel,et al.  Mitochondrial‐targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice , 2013, Aging cell.

[67]  Torsten Doenst,et al.  Cardiac Metabolism in Heart Failure: Implications Beyond ATP Production , 2013, Circulation research.

[68]  C. Moraes,et al.  Specific elimination of mutant mitochondrial genomes in patient–derived cells by mitoTALENs , 2013, Nature Medicine.

[69]  Miyuki Sato,et al.  Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. , 2013, Biochimica et biophysica acta.

[70]  H. Szeto,et al.  The mitochondrial-targeted compound SS-31 re-energizes ischemic mitochondria by interacting with cardiolipin. , 2013, Journal of the American Society of Nephrology : JASN.

[71]  S. Ghaffari,et al.  The effect of prethrombolytic cyclosporine-A injection on clinical outcome of acute anterior ST-elevation myocardial infarction. , 2013, Cardiovascular therapeutics.

[72]  C. López-Otín,et al.  Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain , 2013, Science.

[73]  Rick B. Vega,et al.  Perturbations in the gene regulatory pathways controlling mitochondrial energy production in the failing heart. , 2013, Biochimica et biophysica acta.

[74]  David A. Brown,et al.  Redox-dependent increases in glutathione reductase and exercise preconditioning: role of NADPH oxidase and mitochondria. , 2013, Cardiovascular research.

[75]  V. Giorgio,et al.  Dimers of mitochondrial ATP synthase form the permeability transition pore , 2013, Proceedings of the National Academy of Sciences.

[76]  M. Gheorghiade,et al.  Mitochondria as a therapeutic target in heart failure. , 2013, Journal of the American College of Cardiology.

[77]  C. Hoppel,et al.  Mitochondria in cardiac hypertrophy and heart failure. , 2013, Journal of molecular and cellular cardiology.

[78]  T. Shirasawa,et al.  Antioxidants Improve the Phenotypes of Dilated Cardiomyopathy and Muscle Fatigue in Mitochondrial Superoxide Dismutase-Deficient Mice , 2013, Molecules.

[79]  D. Egli,et al.  Nuclear genome transfer in human oocytes eliminates mitochondrial DNA variants , 2012, Nature.

[80]  M. MacCoss,et al.  Global Proteomics and Pathway Analysis of Pressure-Overload–Induced Heart Failure and Its Attenuation by Mitochondrial-Targeted Peptides , 2012, Circulation. Heart failure.

[81]  Hsin-Chieh Yeh,et al.  Effect of the 2011 vs 2003 duty hour regulation-compliant models on sleep duration, trainee education, and continuity of patient care among internal medicine house staff: a randomized trial. , 2013, JAMA internal medicine.

[82]  Å. Gustafsson,et al.  Mitochondrial autophagy--an essential quality control mechanism for myocardial homeostasis. , 2013, Circulation journal : official journal of the Japanese Circulation Society.

[83]  K. McDonald,et al.  Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O2 balance and diastolic function. , 2013, Journal of applied physiology.

[84]  Biykem Bozkurt,et al.  2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. , 2013, Circulation.

[85]  C. Hoppel,et al.  Mitochondrial dysfunction in heart failure , 2013, Heart Failure Reviews.

[86]  R. Hajjar,et al.  Altered sarcoplasmic reticulum calcium cycling—targets for heart failure therapy , 2012, Nature Reviews Cardiology.

[87]  S. Dimauro,et al.  Human mitochondrial DNA: roles of inherited and somatic mutations , 2012, Nature Reviews Genetics.

[88]  D. Atar,et al.  Rationale and Design of the ‘MITOCARE’ Study: A Phase II, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Assess the Safety and Efficacy of TRO40303 for the Reduction of Reperfusion Injury in Patients Undergoing Percutaneous Coronary Intervention for Acute Myocardial Infarction , 2012, Cardiology.

[89]  G. Porter,et al.  Mitochondria as a Drug Target in Ischemic Heart Disease and Cardiomyopathy , 2012, Circulation research.

[90]  Robert W. Taylor,et al.  Cardiac involvement in mitochondrial DNA disease: clinical spectrum, diagnosis, and management , 2012, European heart journal.

[91]  J. Gorman,et al.  Reduction of Ischemia/Reperfusion Injury With Bendavia, a Mitochondria-Targeting Cytoprotective Peptide , 2012, Journal of the American Heart Association.

[92]  David A. Brown,et al.  Mitochondrial permeability transition in the diabetic heart: contributions of thiol redox state and mitochondrial calcium to augmented reperfusion injury. , 2012, Journal of molecular and cellular cardiology.

[93]  P. Barboni,et al.  Effect of EPI-743 on the clinical course of the mitochondrial disease Leber hereditary optic neuropathy. , 2012, Archives of neurology.

[94]  A. Garnier,et al.  Catecholamine-induced cardiac mitochondrial dysfunction and mPTP opening: protective effect of curcumin. , 2012, American journal of physiology. Heart and circulatory physiology.

[95]  Robert N. Doughty,et al.  The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. , 2011, European heart journal.

[96]  K. McDonald,et al.  Heart failure with preserved ejection fraction: chronic low-intensity interval exercise training preserves myocardial O 2 balance and diastolic function , 2012 .

[97]  D. Atar,et al.  Rationale and Design of the 'MITOCARE' Study: A Phase II, Multicenter, Randomized, Double-Blind, Placebo-Controlled Study to Assess the Safety and Efficacy of TRO40303 for the Reduction of Reperfusion Injury in Patients Undergoing Percutaneous Coronary Intervention for Acute Myocardial Infarction , 2012 .

[98]  K. Magyara,et al.  Cardioprotection by resveratrol : A human clinical trial in patients with stable coronary artery disease , 2012 .

[99]  H. Antretter,et al.  Mitochondrial respiratory control and early defects of oxidative phosphorylation in the failing human heart. , 2011, The international journal of biochemistry & cell biology.

[100]  C. Hoppel,et al.  Cardiac mitochondria in heart failure: normal cardiolipin profile and increased threonine phosphorylation of complex IV. , 2011, Biochimica et biophysica acta.

[101]  S. Powers,et al.  Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. , 2011, Journal of applied physiology.

[102]  S. Fröhling,et al.  Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. , 2011, Journal of the American College of Cardiology.

[103]  David A. Brown,et al.  Exercise-induced cardiac preconditioning: how exercise protects your achy-breaky heart. , 2011, Journal of applied physiology.

[104]  J. Cleland,et al.  The effects of the cardiac myosin activator, omecamtiv mecarbil, on cardiac function in systolic heart failure: a double-blind, placebo-controlled, crossover, dose-ranging phase 2 trial , 2011, The Lancet.

[105]  Wendy Keung,et al.  Targeting fatty acid and carbohydrate oxidation--a novel therapeutic intervention in the ischemic and failing heart. , 2011, Biochimica et biophysica acta.

[106]  S. Powers,et al.  Mitochondria-targeted antioxidants protect against mechanical ventilation-induced diaphragm weakness* , 2011, Critical care medicine.

[107]  P. Rabinovitch,et al.  Mitochondrial targeted antioxidant Peptide ameliorates hypertensive cardiomyopathy. , 2011, Journal of the American College of Cardiology.

[108]  T. Miksanek The Sublime Engine: A Biography of the Human Heart , 2011 .

[109]  B. Chernyak,et al.  Novel Mitochondria-Targeted Antioxidants: Plastoquinone Conjugated with Cationic Plant Alkaloids Berberine and Palmatine , 2011, Pharmaceutical Research.

[110]  H. Szeto,et al.  Novel Therapies Targeting Inner Mitochondrial Membrane—From Discovery to Clinical Development , 2011, Pharmaceutical Research.

[111]  H. Szeto,et al.  Mitochondria-targeted peptide accelerates ATP recovery and reduces ischemic kidney injury. , 2011, Journal of the American Society of Nephrology : JASN.

[112]  Angelo Auricchio,et al.  What are the costs of heart failure? , 2011, Europace : European pacing, arrhythmias, and cardiac electrophysiology : journal of the working groups on cardiac pacing, arrhythmias, and cardiac cellular electrophysiology of the European Society of Cardiology.

[113]  H. Westerblad,et al.  Mitochondrial production of reactive oxygen species contributes to the β‐adrenergic stimulation of mouse cardiomycytes , 2011, The Journal of physiology.

[114]  J. Starnes,et al.  Effect of N-2-mercaptopropionyl glycine on exercise-induced cardiac adaptations. , 2011, American journal of physiology. Regulatory, integrative and comparative physiology.

[115]  D. Cox,et al.  Cardiac Myosin Activation: A Potential Therapeutic Approach for Systolic Heart Failure , 2011, Science.

[116]  S. Walrand,et al.  Chronic formoterol administration reduces cardiac mitochondrial protein synthesis and oxidative capacity in mice. , 2011, International journal of cardiology.

[117]  Z. Bosnjak,et al.  SOD1 and MitoTEMPO partially prevent mitochondrial permeability transition pore opening, necrosis, and mitochondrial apoptosis after ATP depletion recovery. , 2010, Free radical biology & medicine.

[118]  B. O’Rourke,et al.  Role of mitochondrial dysfunction in cardiac glycoside toxicity. , 2010, Journal of molecular and cellular cardiology.

[119]  B. O’Rourke,et al.  Cardiac mitochondria and arrhythmias. , 2010, Cardiovascular research.

[120]  J. McMurray,et al.  Coenzyme Q10, rosuvastatin, and clinical outcomes in heart failure: a pre-specified substudy of CORONA (controlled rosuvastatin multinational study in heart failure). , 2010, Journal of the American College of Cardiology.

[121]  S. Cortassa,et al.  Redox-optimized ROS balance: a unifying hypothesis. , 2010, Biochimica et biophysica acta.

[122]  M. Aon,et al.  Cardiac arrhythmias induced by glutathione oxidation can be inhibited by preventing mitochondrial depolarization. , 2010, Journal of molecular and cellular cardiology.

[123]  D. Harrison,et al.  Therapeutic targeting of mitochondrial superoxide in hypertension , 2010, Circulation research.

[124]  P. Croisille,et al.  Effect of cyclosporine on left ventricular remodeling after reperfused myocardial infarction. , 2010, Journal of the American College of Cardiology.

[125]  Min Zhang,et al.  NADPH oxidases and cardiac remodelling , 2010, Heart Failure Reviews.

[126]  M. Gheorghiade,et al.  Enhancing the metabolic substrate: PPAR-alpha agonists in heart failure , 2010, Heart Failure Reviews.

[127]  V. Shoshan-Barmatz,et al.  NCLX is an essential component of mitochondrial Na+/Ca2+ exchange , 2009, Proceedings of the National Academy of Sciences.

[128]  W. Cascio,et al.  'Leaky' ryanodine receptors and sudden cardiac death. , 2009, Cardiovascular research.

[129]  Dmitry Terentyev,et al.  Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. , 2009, Cardiovascular research.

[130]  Javed Butler,et al.  The sympathetic nervous system in heart failure physiology, pathophysiology, and clinical implications. , 2009, Journal of the American College of Cardiology.

[131]  P. Pasdois,et al.  The role of the mitochondrial permeability transition pore in heart disease. , 2009, Biochimica et biophysica acta.

[132]  R. Balaban The role of Ca(2+) signaling in the coordination of mitochondrial ATP production with cardiac work. , 2009, Biochimica et biophysica acta.

[133]  T. Kaneko,et al.  Antioxidant, EUK-8, prevents murine dilated cardiomyopathy. , 2009, Circulation journal : official journal of the Japanese Circulation Society.

[134]  Manuela G. López,et al.  Mitochondrial Na+/Ca2+-Exchanger Blocker CGP37157 Protects against Chromaffin Cell Death Elicited by Veratridine , 2009, Journal of Pharmacology and Experimental Therapeutics.

[135]  G. Hatch,et al.  Cardiolipin biosynthesis and remodeling enzymes are altered during development of heart failure , 2009, Journal of Lipid Research.

[136]  A. Dominiczak,et al.  Mitochondria-Targeted Antioxidant MitoQ10 Improves Endothelial Function and Attenuates Cardiac Hypertrophy , 2009, Hypertension.

[137]  A. Henning,et al.  Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. , 2009, Journal of the American College of Cardiology.

[138]  Michael V. Cohen,et al.  Why do we still not have cardioprotective drugs? , 2009, Circulation journal : official journal of the Japanese Circulation Society.

[139]  C. Baines The molecular composition of the mitochondrial permeability transition pore. , 2009, Journal of molecular and cellular cardiology.

[140]  E. Griffiths Mitochondrial calcium transport in the heart: physiological and pathological roles. , 2009, Journal of molecular and cellular cardiology.

[141]  R. Balaban Domestication of the cardiac mitochondrion for energy conversion. , 2009, Journal of molecular and cellular cardiology.

[142]  Michael Stumvoll,et al.  Antioxidants prevent health-promoting effects of physical exercise in humans , 2009, Proceedings of the National Academy of Sciences.

[143]  L. A. Obukhova,et al.  An attempt to prevent senescence: a mitochondrial approach. , 2009, Biochimica et biophysica acta.

[144]  Daniel A Beard,et al.  Experimentally observed phenomena on cardiac energetics in heart failure emerge from simulations of cardiac metabolism , 2009, Proceedings of the National Academy of Sciences.

[145]  W. Kraus,et al.  Effects of exercise training on health status in patients with chronic heart failure: HF-ACTION randomized controlled trial. , 2009, JAMA.

[146]  W. Kraus,et al.  Efficacy and safety of exercise training in patients with chronic heart failure: HF-ACTION randomized controlled trial. , 2009, JAMA.

[147]  E. Lesnefsky,et al.  Cardiolipin Remodeling in the Heart , 2009, Journal of cardiovascular pharmacology.

[148]  P. Neufer,et al.  Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. , 2009, The Journal of clinical investigation.

[149]  Matthew Gittinger,et al.  Heart failure enhances susceptibility to arrhythmogenic cardiac alternans. , 2009, Heart rhythm.

[150]  S. Sihag,et al.  PGC-1alpha and ERRalpha target gene downregulation is a signature of the failing human heart. , 2009, Journal of molecular and cellular cardiology.

[151]  Minnie Sarwal,et al.  Calcineurin Inhibitor Nephrotoxicity , 2012 .

[152]  Michael P. Murphy,et al.  How mitochondria produce reactive oxygen species , 2008, The Biochemical journal.

[153]  William T. Abraham,et al.  Focused Update : ACCF / AHA Guidelines for the Diagnosis and Management of Heart Failure in Adults , 2013 .

[154]  Richard Neutze,et al.  Opening and closing the metabolite gate , 2008, Proceedings of the National Academy of Sciences.

[155]  J. Trnka,et al.  Mitochondria‐Targeted Antioxidants in the Treatment of Disease , 2008, Annals of the New York Academy of Sciences.

[156]  J. Enríquez,et al.  Respiratory active mitochondrial supercomplexes. , 2008, Molecular cell.

[157]  M. Aon,et al.  Glutathione oxidation as a trigger of mitochondrial depolarization and oscillation in intact hearts. , 2008, Journal of molecular and cellular cardiology.

[158]  C. Frampton,et al.  Coenzyme Q10: an independent predictor of mortality in chronic heart failure. , 2008, Journal of the American College of Cardiology.

[159]  William Stanley,et al.  Cardiac mitochondria in heart failure: decrease in respirasomes and oxidative phosphorylation , 2008, Cardiovascular research.

[160]  P. Scifo,et al.  Impaired left ventricular energy metabolism in patients with hypertrophic cardiomyopathy is related to the extension of fibrosis at delayed gadolinium-enhanced magnetic resonance imaging , 2008, Heart.

[161]  Pierre Croisille,et al.  Effect of cyclosporine on reperfusion injury in acute myocardial infarction. , 2008, The New England journal of medicine.

[162]  R. Hajjar,et al.  The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases , 2008, Nature Clinical Practice Cardiovascular Medicine.

[163]  M. Murphy,et al.  Targeting lipophilic cations to mitochondria. , 2008, Biochimica et biophysica acta.

[164]  M. Frenneaux,et al.  Reduced in vivo skeletal muscle oxygen consumption in patients with chronic heart failure—A study using Near Infrared Spectrophotometry (NIRS) , 2008, European journal of heart failure.

[165]  E. Murphy,et al.  Ion transport and energetics during cell death and protection. , 2008, Physiology.

[166]  E. Murphy,et al.  Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. , 2008, Physiological reviews.

[167]  A. Munnich,et al.  Redistribution of accumulated cell iron: a modality of chelation with therapeutic implications. , 2008, Blood.

[168]  H. Szeto Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. , 2008, Antioxidants & redox signaling.

[169]  C. Frampton,et al.  Coenzyme Q 10 An Independent Predictor of Mortality in Chronic Heart Failure , 2008 .

[170]  C. Frampton,et al.  An Independent Predictor of Mortality in Chronic Heart Failure , 2008 .

[171]  David A. Brown,et al.  Perspectives in innate and acquired cardioprotection: cardioprotection acquired through exercise. , 2007, Journal of applied physiology.

[172]  Robert W. Taylor,et al.  Induction of mitochondrial biogenesis is a maladaptive mechanism in mitochondrial cardiomyopathies. , 2007, Journal of the American College of Cardiology.

[173]  A. Cipriani,et al.  What is an individual patient data meta-analysis? , 2007, Epidemiologia e Psichiatria Sociale.

[174]  W. Craigen,et al.  Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death , 2007, Nature Cell Biology.

[175]  Yasuhide Watanabe,et al.  Protein kinase A catalytic subunit alters cardiac mitochondrial redox state and membrane potential via the formation of reactive oxygen species. , 2007, Circulation journal : official journal of the Japanese Circulation Society.

[176]  H. Sabbah,et al.  Cyclosporine A attenuates mitochondrial permeability transition and improves mitochondrial respiratory function in cardiomyocytes isolated from dogs with heart failure. , 2007, Journal of molecular and cellular cardiology.

[177]  G. Sparagna,et al.  Role of cardiolipin alterations in mitochondrial dysfunction and disease. , 2007, American journal of physiology. Cell physiology.

[178]  David A. Brown,et al.  Cardioprotection Acquired Through Exercise , 2007 .

[179]  T. Nozawa,et al.  Influence of β-Adrenoceptor Blockade on the Myocardial Accumulation of Fatty Acid Tracer and Its Intracellular Metabolism in the Heart After Ischemia-Reperfusion Injury , 2006 .

[180]  Robert G. Weiss,et al.  Altered Creatine Kinase Adenosine Triphosphate Kinetics in Failing Hypertrophied Human Myocardium , 2006, Circulation.

[181]  P. Doevendans,et al.  EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. , 2006, Journal of the American College of Cardiology.

[182]  Brian O'Rourke,et al.  Elevated Cytosolic Na+ Decreases Mitochondrial Ca2+ Uptake During Excitation–Contraction Coupling and Impairs Energetic Adaptation in Cardiac Myocytes , 2006, Circulation research.

[183]  B. Menon,et al.  Expression of the cytoplasmic domain of β1 integrin induces apoptosis in adult rat ventricular myocytes (ARVM) via the involvement of caspase-8 and mitochondrial death pathway , 2006, Basic Research in Cardiology.

[184]  S. Sollott,et al.  Mitochondrial ROS-induced ROS release: an update and review. , 2006, Biochimica et biophysica acta.

[185]  Laura C. Greaves,et al.  Mitochondrial DNA mutations in human disease , 2006, IUBMB life.

[186]  Arantxa González,et al.  Altered cardiac expression of peroxisome proliferator-activated receptor-isoforms in patients with hypertensive heart disease. , 2006, Cardiovascular research.

[187]  S. Cortassa,et al.  Mitochondrial criticality: a new concept at the turning point of life or death. , 2006, Biochimica et biophysica acta.

[188]  H. Sabbah,et al.  Inhibition of Mitochondrial Permeability Transition Pores by Cyclosporine A Improves Cytochrome c Oxidase Function and Increases Rate of ATP Synthesis in Failing Cardiomyocytes , 2005, Heart Failure Reviews.

[189]  M. Chandler,et al.  Malonyl-CoA decarboxylase inhibition suppresses fatty acid oxidation and reduces lactate production during demand-induced ischemia. , 2005, American journal of physiology. Heart and circulatory physiology.

[190]  J. Ornato,et al.  ACC/AHA 2005 Guideline Update for the Diagnosis and Management of Chronic Heart Failure in the Adult—Summary Article , 2005 .

[191]  D. Feldman,et al.  Mechanisms of Disease: β-adrenergic receptors—alterations in signal transduction and pharmacogenomics in heart failure , 2005, Nature Clinical Practice Cardiovascular Medicine.

[192]  M David Tilson,et al.  The polymorphonuclear leukocyte and the abdominal aortic aneurysm: a neglected cell type and a neglected disease. , 2005, Circulation.

[193]  William C Stanley,et al.  Myocardial substrate metabolism in the normal and failing heart. , 2005, Physiological reviews.

[194]  Jeffrey Robbins,et al.  Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death , 2005, Nature.

[195]  Paul A Bottomley,et al.  ATP flux through creatine kinase in the normal, stressed, and failing human heart. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[196]  H. Shimomura,et al.  Effects of edaravone on reperfusion injury in patients with acute myocardial infarction. , 2004, The American journal of cardiology.

[197]  M. Chandler,et al.  Malonyl Coenzyme A Decarboxylase Inhibition Protects the Ischemic Heart by Inhibiting Fatty Acid Oxidation and Stimulating Glucose Oxidation , 2004, Circulation research.

[198]  C. Bruno,et al.  Respiratory complex III is required to maintain complex I in mammalian mitochondria. , 2004, Molecular cell.

[199]  A. Garnier,et al.  Energy metabolism in heart failure , 2004, The Journal of physiology.

[200]  S. Javadov,et al.  Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection. , 2004, Cardiovascular research.

[201]  Dean P. Jones,et al.  The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore , 2004, Nature.

[202]  D. Kelly,et al.  Gene Regulatory Mechanisms Governing Energy Metabolism during Cardiac Hypertrophic Growth , 2002, Heart Failure Reviews.

[203]  A. Munnich,et al.  Dramatic improvement in mitochondrial cardiomyopathy following treatment with idebenone , 2001, Journal of Inherited Metabolic Disease.

[204]  R. Starling,et al.  Human myocardial ATP content and in vivo contractile function , 1998, Molecular and Cellular Biochemistry.

[205]  Kathy Pfeiffer,et al.  Cardiolipin Stabilizes Respiratory Chain Supercomplexes* , 2003, Journal of Biological Chemistry.

[206]  David A. Brown,et al.  Exercise training preserves coronary flow and reduces infarct size after ischemia-reperfusion in rat heart. , 2003, Journal of applied physiology.

[207]  A. Blamire,et al.  Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. , 2003, Journal of the American College of Cardiology.

[208]  S. Houser,et al.  Sodium and the heart: a hidden key factor in cardiac regulation. , 2003, Cardiovascular research.

[209]  S. Houser,et al.  [Na+]i handling in the failing human heart. , 2003, Cardiovascular research.

[210]  D. Sawyer,et al.  &bgr;-Adrenergic Receptor–Stimulated Apoptosis in Cardiac Myocytes Is Mediated by Reactive Oxygen Species/c-Jun NH2-Terminal Kinase–Dependent Activation of the Mitochondrial Pathway , 2003, Circulation research.

[211]  P. Herrero,et al.  Myocardial Fatty Acid Metabolism: Independent Predictor of Left Ventricular Mass in Hypertensive Heart Disease , 2003, Hypertension.

[212]  Stefan Neubauer,et al.  Absolute concentrations of high-energy phosphate metabolites in normal, hypertrophied, and failing human myocardium measured noninvasively with (31)P-SLOOP magnetic resonance spectroscopy. , 2002, Journal of the American College of Cardiology.

[213]  R. Balaban Cardiac energy metabolism homeostasis: role of cytosolic calcium. , 2002, Journal of molecular and cellular cardiology.

[214]  H. Schägger Respiratory chain supercomplexes of mitochondria and bacteria. , 2002, Biochimica et biophysica acta.

[215]  Lars S. Maier,et al.  Rate Dependence of [Na+]i and Contractility in Nonfailing and Failing Human Myocardium , 2002, Circulation.

[216]  Donald M Bers,et al.  Intracellular Na+ Concentration Is Elevated in Heart Failure But Na/K Pump Function Is Unchanged , 2002, Circulation.

[217]  A. Terzic,et al.  Adenylate kinase phosphotransfer communicates cellular energetic signals to ATP-sensitive potassium channels , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[218]  A E Vercesi,et al.  Mitochondrial permeability transition and oxidative stress , 2001, FEBS letters.

[219]  D. Kang,et al.  Mitochondrial DNA Damage and Dysfunction Associated With Oxidative Stress in Failing Hearts After Myocardial Infarction , 2001, Circulation research.

[220]  J. Saffitz,et al.  Peroxisome proliferator-activated receptor gamma coactivator-1 promotes cardiac mitochondrial biogenesis. , 2000, The Journal of clinical investigation.

[221]  M. Brand Uncoupling to survive? The role of mitochondrial inefficiency in ageing , 2000, Experimental Gerontology.

[222]  W. Colucci,et al.  p38 Mitogen-activated Protein Kinase Pathway Protects Adult Rat Ventricular Myocytes against β-Adrenergic Receptor-stimulated Apoptosis , 2000, The Journal of Biological Chemistry.

[223]  A. Takeshita,et al.  Direct evidence for increased hydroxyl radicals originating from superoxide in the failing myocardium. , 2000, Circulation research.

[224]  S. Neubauer,et al.  [Cardiac energy metabolism in heart valve diseases with 31P MR spectroscopy]. , 2000, Der Radiologe.

[225]  S. Yusuf,et al.  Vitamin E supplementation and cardiovascular events in high-risk patients. , 2000, The New England journal of medicine.

[226]  Catherine Communal,et al.  Opposing Effects of β1- and β2-Adrenergic Receptors on Cardiac Myocyte Apoptosis Role of a Pertussis Toxin–Sensitive G Protein , 1999 .

[227]  GerdHasenfuss,et al.  Downregulation of the Na+-Creatine Cotransporter in Failing Human Myocardium and in Experimental Heart Failure , 1999 .

[228]  S. Neubauer,et al.  Downregulation of the Na(+)-creatine cotransporter in failing human myocardium and in experimental heart failure. , 1999, Circulation.

[229]  M. Crompton,et al.  The mitochondrial permeability transition pore. , 1999, Biochemical Society symposium.

[230]  A. Takeshita,et al.  Mitochondrial electron transport complex I is a potential source of oxygen free radicals in the failing myocardium. , 1999, Circulation research.

[231]  B. Stoel,et al.  Diastolic dysfunction in hypertensive heart disease is associated with altered myocardial metabolism. , 1999, Circulation.

[232]  R. Winslow,et al.  Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, II: model studies. , 1999, Circulation research.

[233]  D. Sawyer,et al.  Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis : role of a pertussis toxin-sensitive G protein. , 1999, Circulation.

[234]  D. Kass,et al.  Mechanisms of altered excitation-contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. , 1999, Circulation research.

[235]  Lionel H. Opie,et al.  Heart Physiology: From Cell to Circulation , 2003 .

[236]  O. Lutz,et al.  31P NMR spectroscopy detects metabolic abnormalities in asymptomatic patients with hypertrophic cardiomyopathy. , 1998, Circulation.

[237]  B. Rajagopalan,et al.  Mitral regurgitation: impaired systolic function, eccentric hypertrophy, and increased severity are linked to lower phosphocreatine/ATP ratios in humans. , 1998, Circulation.

[238]  S. Neubauer,et al.  Cardiac high-energy phosphate metabolism in patients with aortic valve disease assessed by 31P-magnetic resonance spectroscopy. , 1997, Journal of investigative medicine : the official publication of the American Federation for Clinical Research.

[239]  D. Kelly,et al.  Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. , 1996, Circulation.

[240]  S. Neubauer,et al.  Contributions of 31P-magnetic resonance spectroscopy to the understanding of dilated heart muscle disease. , 1995, European heart journal.

[241]  T. Inubushi,et al.  Quantitative measurements of cardiac phosphorus metabolites in coronary artery disease by 31P magnetic resonance spectroscopy. , 1995, Circulation.

[242]  矢部 隆宏 Detection of myocardial ischemia by [31]P magnetic resonance spectroscopy during handgrip exercise , 1995 .

[243]  S. Morikawa,et al.  Detection of myocardial ischemia by 31P magnetic resonance spectroscopy during handgrip exercise. , 1994, Circulation.

[244]  J. Cohn,et al.  Plasma Norepinephrine, Plasma Renin Activity, and Congestive Heart Failure Relations to Survival and the Effects of Therapy in V‐HeFT II , 1993, Circulation.

[245]  K. Takeda,et al.  31P MR spectroscopy in hypertrophic cardiomyopathy: comparison with Tl-201 myocardial perfusion imaging. , 1993, American heart journal.

[246]  S. Neubauer,et al.  31P Magnetic Resonance Spectroscopy in Dilated Cardiomyopathy and Coronary Artery Disease: Altered Cardiac High‐Energy Phosphate Metabolism in Heart Failure , 1992, Circulation.

[247]  M. Lesch,et al.  Mitochondrial abnormalities in myocardium of dogs with chronic heart failure. , 1992, Journal of molecular and cellular cardiology.

[248]  E. E. van der Wall,et al.  Cardiac metabolism in patients with dilated and hypertrophic cardio‐myopathy: Assessment with proton‐decoupled P‐31 MR spectroscopy , 1992, Journal of Magnetic Resonance Imaging.

[249]  J. Schaper,et al.  Ultrastructural quantitation of mitochondria and myofilaments in cardiac muscle from 10 different animal species including man. , 1992, Journal of molecular and cellular cardiology.

[250]  E. Fleck,et al.  Myocardial adenine nucleotide concentrations and myocardial norepinephrine content in patients with heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. , 1992, The American journal of cardiology.

[251]  M W Weiner,et al.  Metabolic response of the human heart to inotropic stimulation: In vivo phosphorus‐31 studies of normal and cardiomyopathic myocardium , 1992, Magnetic resonance in medicine.

[252]  G. Radda,et al.  Detection of low phosphocreatine to ATP ratio in failing hypertrophied human myocardium by 31P magnetic resonance spectroscopy , 1991, The Lancet.

[253]  C. Hardy,et al.  Altered myocardial high-energy phosphate metabolites in patients with dilated cardiomyopathy. , 1991, American heart journal.

[254]  M. Weiner,et al.  In vivo phosphorus-31 spectroscopic imaging in patients with global myocardial disease. , 1990, The American journal of cardiology.

[255]  J. Schaper,et al.  Ultrastructural Morphometric Analysis of Myocardium from Dogs, Rats, Hamsters, Mice, and from Human Hearts , 1985, Circulation research.

[256]  L. Opie,et al.  Adrenaline-induced "oxygen-wastage" and enzyme release from working rat heart. Effects of calcium antagonism, beta-blockade, nicotinic acid and coronary artery ligation. , 1979, Journal of molecular and cellular cardiology.

[257]  L Margulis,et al.  Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. , 1975, Symposia of the Society for Experimental Biology.

[258]  E. J. Battersby,et al.  Effect of pressure development on oxygen consumption by isolated rat heart. , 1967, The American journal of physiology.

[259]  P. Mitchell Coupling of Phosphorylation to Electron and Hydrogen Transfer by a Chemi-Osmotic type of Mechanism , 1961, Nature.

[260]  A. Patz Experimental studies. , 1955, American journal of ophthalmology.

[261]  F. Rosenfeldt,et al.  The Effect of Coenzyme Q 10 on Morbidity and Mortality in Chronic Heart Failure Results From Q-SYMBIO : A Randomized Double-Blind Trial , 2022 .