Slip systems interactions in α-iron determined by dislocation dynamics simulations

Dislocation–dislocation interactions are investigated in α-iron using dislocation dynamics (DD) simulations. Special attention is paid to the simulation conditions and parameters to reveal the domain of validity of the calculations. Interaction coefficients between the {11¯0}〈111〉 slip systems are computed and analyzed in connection with the dislocation microstructures developed during simulations. The so obtained crystalline law is used to predict the flow stress in a massive DD simulation of a tensile test in duplex slip condition.

[1]  D. F. Stein,et al.  The effect of carbon on the strain-rate sensitivity of iron single crystals , 1966 .

[2]  A. U. Seybolt,et al.  The mechanical properties of iron single crystals containing less than 5 × 10−3 ppm carbon☆ , 1963 .

[3]  S. Takeuchi,et al.  Slip Systems and Their Critical Shear Stress in 3% Silicon Iron , 1964 .

[4]  Ladislas P. Kubin,et al.  Mesoscopic simulations of plastic deformation , 2001 .

[5]  Phillips,et al.  Mesoscopic analysis of structure and strength of dislocation junctions in fcc metals , 2000, Physical review letters.

[6]  Thierry Hoc,et al.  Physical analyses of crystal plasticity by DD simulations , 2006 .

[7]  Laurent Tabourot,et al.  Generalised constitutive laws for f.c.c. single crystals , 1997 .

[8]  D. Parks,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[9]  L. Kubin,et al.  On the Use of Periodic Boundary Conditions in Dislocation Dynamics Simulations , 2004 .

[10]  D Rodney,et al.  The Role of Collinear Interaction in Dislocation-Induced Hardening , 2003, Science.

[11]  L. Kubin,et al.  Collinear interactions of dislocations and slip systems , 2005 .

[12]  D. Gonzalez,et al.  Déformation plastique de monocristaux de fer , 1961 .

[13]  A. Cochardt,et al.  Interaction between dislocations and interstitial atoms in body-centered cubic metals , 1955 .

[14]  R. C. Picu A mechanism for the negative strain-rate sensitivity of dilute solid solutions , 2004 .

[15]  D. Quesnel,et al.  Solution softening and hardening in the IronCarbon system , 1975 .

[16]  M. Fivel,et al.  A study of dislocation junctions in FCC metals by an orientation dependent line tension model , 2002 .

[17]  David J. Srolovitz,et al.  Solute effects on dislocation glide in metals , 2003 .

[18]  V. Bulatov,et al.  Periodic Boundary Conditions for Dislocation Dynamics Simulations in Three Dimensions , 2000 .

[19]  C. Schwink,et al.  On the flow stress of [100]- and [111]-oriented Cu-Mn single crystals: A transmission electron microscopy study , 1992 .

[20]  P. Franciosi Glide mechanisms in b.c.c. crystals: An investigation of the case of α-iron through multislip and latent hardening tests , 1983 .

[21]  L. Kubin,et al.  Dislocation study of prismatic slip systems and their interactions in hexagonal close packed metals: application to zirconium , 2004 .

[22]  F. Nabarro,et al.  Dislocations in solids , 1979 .

[23]  James S. Stolken,et al.  Rules for Forest Interactions between Dislocations , 1999 .

[24]  D. Bacon,et al.  Computer simulation of interaction of an edge dislocation with a carbon interstitial in α-iron and effects on glide , 2007 .

[25]  Dominique François,et al.  From Charpy to Present Impact Testing , 2002 .

[26]  J. Weertman,et al.  Dislocation mobility in potassium and iron single crystals , 1975 .

[27]  P. L. Pratt,et al.  Plastic Deformation and Work-Hardening in NaCl , 1964 .

[28]  P. Franciosi,et al.  Latent hardening in copper and aluminium single crystals , 1980 .

[29]  E. Kuramoto,et al.  Thermally activated slip deformation of high purity iron single crystals between 4.2 K and 300 K , 1979 .

[30]  Experimental and numerical analysis of localization during sequential test for an IF–Ti steel , 2001 .

[31]  W. Spitzig,et al.  The effect of orientation and temperature on the plastic flow properties of iron single crystals , 1970 .

[32]  G. Saada Sur le durcissement dû à la recombinaison des dislocations , 1960 .

[33]  L. Kubin,et al.  Dislocation Intersections and Reactions in FCC and BCC Crystals , 2003 .

[34]  Jens Lothe John Price Hirth,et al.  Theory of Dislocations , 1968 .

[35]  L. Kubin,et al.  Dislocation Interactions and Symmetries in BCC Crystals , 2004 .

[36]  N. Mott,et al.  An attempt to estimate the degree of precipitation hardening, with a simple model , 1940 .

[37]  R Madec,et al.  From dislocation junctions to forest hardening. , 2002, Physical review letters.

[38]  U. F. Kocks,et al.  Physics and phenomenology of strain hardening: the FCC case , 2003 .

[39]  Benoit Devincre,et al.  Solute friction and forest interaction , 2006 .

[40]  Y. Shibutani,et al.  IUTAM Symposium on Mesoscopic Dynamics of Fracture Process and Materials Strength , 2004 .

[41]  A. Keh Work hardening and deformation sub-structure in iron single crystals deformed in tension at 298°k , 1965 .

[42]  T. Takeuchi,et al.  Latent hardening in iron single crystals with 〈110〉 extension axis , 1972 .

[43]  H. Solomon,et al.  Solute effects in micro and macroyielding of iron at low temperatures , 1971 .

[44]  G. Schoeck,et al.  The Contribution of the Dislocation Forest to the Flow Stress , 1972 .