A Hybrid Material Design and Evaluation System for Steelmaking
暂无分享,去创建一个
Development of material design system for steelmaking is a complex task, due to the interrelationship of many factors in steelmaking process. In addiition to this, design specifications vary frequently and material design knowledge is held in largely intuitive undefined format. This paper discusses material design system which deals with the determination of the steelmaking aim chemistry utilising hybrid approach of knowledge bases along with mathematical modelling to deal with this complex task. Knowledge Elicitation (KEL) is the most important stage, but often the principal bottleneck, in the development of knowledge-based systems. A new methodology has been developed to efficiently elicit material design knowledge utilieing a three character alphanumeric codification scheme, paper models and non-interview techniques. The paper then presents he application of fuzzy logic to the material design system to rank the alternative steelmaking aim chemistries according to the degree which will satisfy the customer's requirements of chemistry and mechanical properties, with due consideration given to the economic aspects and the complexity involved in the production. Finally, the paper describes the development of a codification scheme aided graphical user interface to enable quick and error free input of basic information about the steel plate required and customer special requirements. In addition to making the system more user friendly and visually appealing, the interface also adds flexibility and sophistication to the prototype knowledge-based system for designing steel plates.