Interaction of brain areas of visual and vestibular simultaneous activity with fMRI

Abstract Static body equilibrium is an essential requisite for human daily life. It is known that visual and vestibular systems must work together to support equilibrium. However, the relationship between these two systems is not fully understood. In this work, we present the results of a study which identify the interaction of brain areas that are involved with concurrent visual and vestibular inputs. The visual and the vestibular systems were individually and simultaneously stimulated, using flickering checkerboard (without movement stimulus) and galvanic current, during experiments of functional magnetic resonance imaging. Twenty-four right-handed and non-symptomatic subjects participated in this study. Single visual stimulation shows positive blood-oxygen-level-dependent (BOLD) responses (PBR) in the primary and associative visual cortices. Single vestibular stimulation shows PBR in the parieto-insular vestibular cortex, inferior parietal lobe, superior temporal gyrus, precentral gyrus and lobules V and VI of the cerebellar hemisphere. Simultaneous stimulation shows PBR in the middle and inferior frontal gyri and in the precentral gyrus. Vestibular- and somatosensory-related areas show negative BOLD responses (NBR) during simultaneous stimulation. NBR areas were also observed in the calcarine gyrus, lingual gyrus, cuneus and precuneus during simultaneous and single visual stimulations. For static visual and galvanic vestibular simultaneous stimulation, the reciprocal inhibitory visual–vestibular interaction pattern is observed in our results. The experimental results revealed interactions in frontal areas during concurrent visual–vestibular stimuli, which are affected by intermodal association areas in occipital, parietal, and temporal lobes.

[1]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.

[2]  M Dieterich,et al.  Horizontal or vertical optokinetic stimulation activates visual motion-sensitive, ocular motor and vestibular cortex areas with right hemispheric dominance. An fMRI study. , 1998, Brain : a journal of neurology.

[3]  G. Bottini,et al.  How the vestibular system modulates tactile perception in normal subjects: a behavioural and physiological study , 2011, Experimental Brain Research.

[4]  G Michael Halmagyi,et al.  Latency and initiation of the human vestibuloocular reflex to pulsed galvanic stimulation. , 2006, Journal of neurophysiology.

[5]  M. Dieterich,et al.  Insular Strokes Cause No Vestibular Deficits , 2013, Stroke.

[6]  M. Fukunaga,et al.  Negative BOLD-fMRI Signals in Large Cerebral Veins , 2011, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[7]  Oswaldo Baffa,et al.  Human Variability of fMRI Brain Activation in Response to Oculomotor Stimuli , 2007, Brain Topography.

[8]  Jean-Luc Anton,et al.  Region of interest analysis using an SPM toolbox , 2010 .

[9]  K. Thilo,et al.  Vestibular inputs to human motion-sensitive visual cortex. , 2012, Cerebral cortex.

[10]  Alan Cowey,et al.  Plasticity revealed by transcranial magnetic stimulation of early visual cortex , 2000, Neuroreport.

[11]  P. Haggard,et al.  How the vestibular system interacts with somatosensory perception: A sham-controlled study with galvanic vestibular stimulation , 2013, Neuroscience Letters.

[12]  Hamish G. MacDougall,et al.  Maintained ocular torsion produced by bilateral and unilateral galvanic (DC) vestibular stimulation in humans , 1998, Experimental Brain Research.

[13]  F. Mast,et al.  The human vestibular cortex revealed by coordinate-based activation likelihood estimation meta-analysis , 2012, Neuroscience.

[14]  A. Owen The Functional Organization of Working Memory Processes Within Human Lateral Frontal Cortex: The Contribution of Functional Neuroimaging , 1997, The European journal of neuroscience.

[15]  Guldin Wo,et al.  Is there a vestibular cortex , 1998 .

[16]  T. Brandt,et al.  Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. , 1998, Brain : a journal of neurology.

[17]  Brian T. Peters,et al.  Modeling locomotor dysfunction following spaceflight with Galvanic vestibular stimulation , 2006, Experimental Brain Research.

[18]  P. Amorim Mini International Neuropsychiatric Interview (MINI): validacao de entrevista breve para diagnostico de transtornos mentais , 2000 .

[19]  Rüdiger Wenzel,et al.  Human Vestibular Cortex as Identified with Caloric Stimulation in Functional Magnetic Resonance Imaging , 2002, NeuroImage.

[20]  A. Winkler,et al.  Galvanic vestibular stimulator for fMRI studies , 2014 .

[21]  A. Crawley,et al.  Functional MRI of lateral occipitotemporal cortex during pursuit and motion perception , 1996, Annals of neurology.

[22]  O. Grüsser,et al.  Corticofugal projections to the vestibular nuclei in squirrel monkeys: Further evidence of multiple cortical vestibular fields , 1993, The Journal of comparative neurology.

[23]  R. Dean,et al.  TEST REVIEW: Dean C. Delis, Edith Kaplan & Joel H. Kramer, Delis Kaplan Executive Function System (D-KEFS), The Psychological Corporation, San Antonio, TX, 2001. $415.00 (complete kit) , 2006 .

[24]  A. Shmuel,et al.  Sustained Negative BOLD, Blood Flow and Oxygen Consumption Response and Its Coupling to the Positive Response in the Human Brain , 2002, Neuron.

[25]  Steven T. Moore,et al.  Modeling postural instability with Galvanic vestibular stimulation , 2006, Experimental Brain Research.

[26]  T. Brandt,et al.  The Vestibular Cortex: Its Locations, Functions, and Disorders , 1999, Annals of the New York Academy of Sciences.

[27]  M Dieterich,et al.  Effects of galvanic vestibular stimulation on otolithic and semicircular canal eye movements and perceived vertical. , 1998, Electroencephalography and Clinical Neurophysiology.

[28]  Richard S. J. Frackowiak,et al.  Cortical control of saccades and fixation in man. A PET study. , 1994, Brain : a journal of neurology.

[29]  Philippe Kahane,et al.  Reappraisal of the human vestibular cortex by cortical electrical stimulation study , 2003, Annals of neurology.

[30]  B. Dubois,et al.  Functions of the left superior frontal gyrus in humans: a lesion study. , 2006, Brain : a journal of neurology.

[31]  S Glasauer,et al.  Central processing of human ocular torsion analyzed by galvanic vestibular stimulation , 2000, Neuroreport.

[32]  J. Rauschecker,et al.  A PET study of human auditory spatial processing , 1999, Neuroscience Letters.

[33]  Hidenao Fukuyama,et al.  Cortical correlates of vestibulo-ocular reflex modulation: a PET study. , 2003, Brain : a journal of neurology.

[34]  Fabrizio Esposito,et al.  Spatio-temporal pattern of vestibular information processing after brief caloric stimulation. , 2009, European journal of radiology.

[35]  Y. Rossetti,et al.  Remission of anosognosia for right hemiplegia and neglect after caloric vestibular stimulation. , 2013, Restorative neurology and neuroscience.

[36]  Manbir Singh,et al.  Correlation between BOLD‐fMRI and EEG signal changes in response to visual stimulus frequency in humans , 2003, Magnetic resonance in medicine.

[37]  Gabriella Bottini,et al.  Caloric vestibular stimulation: interaction between somatosensory system and vestibular apparatus , 2013, Front. Integr. Neurosci..

[38]  Velia Cardin,et al.  Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. , 2010, Cerebral cortex.

[39]  R. Fitzpatrick,et al.  Effects of galvanic vestibular stimulation on human posture and perception while standing , 2003, The Journal of physiology.

[40]  Denise Manahan-Vaughan,et al.  Synaptic depression in the CA1 region of freely behaving mice is highly dependent on afferent stimulation parameters , 2012, Front. Integr. Neurosci..

[41]  M. D’Esposito,et al.  Functional MRI studies of spatial and nonspatial working memory. , 1998, Brain research. Cognitive brain research.

[42]  A. Berthoz,et al.  Functional MRI of galvanic vestibular stimulation. , 1998, Journal of neurophysiology.

[43]  Georg Kerkhoff,et al.  Spatial hemineglect in humans , 2001, Progress in Neurobiology.

[44]  Gabriella Bottini,et al.  Vestibular modulation of somatosensory perception , 2011, The European journal of neuroscience.

[45]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[46]  K. Amunts,et al.  Identifying human parieto‐insular vestibular cortex using fMRI and cytoarchitectonic mapping , 2006, Human brain mapping.

[47]  N. Logothetis,et al.  Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1 , 2006, Nature Neuroscience.

[48]  N. Logothetis The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[49]  Andrew T. Smith,et al.  The Representation of Egomotion in the Human Brain , 2008, Current Biology.

[50]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[51]  Xue-qun Chen,et al.  Hypoxia influences enkephalin release in rats , 2000, Neuroreport.

[52]  Richard S. Frackowiak,et al.  Neural Correlates of Visual-Motion Perception as Object- or Self-motion , 2002, NeuroImage.

[53]  F Fazio,et al.  Left caloric vestibular stimulation ameliorates right hemianesthesia , 2005, Neurology.

[54]  V. Walsh,et al.  Vestibular Activation Differentially Modulates Human Early Visual Cortex and V5/MT Excitability and Response Entropy , 2012, Journal of Neurology, Neurosurgery & Psychiatry.

[55]  Tarek A. Yousry,et al.  fMRI signal increases and decreases in cortical areas during small-field optokinetic stimulation and central fixation , 2002, Experimental Brain Research.

[56]  O. Grüsser,et al.  Corticofugal connections between the cerebral cortex and brainstem vestibular nuclei in the macaque monkey , 1994, The Journal of comparative neurology.

[57]  D. Bressler,et al.  Negative BOLD fMRI Response in the Visual Cortex Carries Precise Stimulus-Specific Information , 2007, PloS one.

[58]  Thomas Stephan,et al.  Performing allocentric visuospatial judgments with induced distortion of the egocentric reference frame: an fMRI study with clinical implications , 2003, NeuroImage.

[59]  Richard S. J. Frackowiak,et al.  Identification of the central vestibular projections in man: a positron emission tomography activation study , 2004, Experimental Brain Research.

[60]  Yoshiharu Sakata,et al.  The Vestibular Cortex , 2002 .

[61]  Torsten Schubert,et al.  Functional neuroanatomy of interference in overlapping dual tasks: an fMRI study. , 2003, Brain research. Cognitive brain research.

[62]  Th. Probst,et al.  Electrophysiological evidence for visual-vestibular interaction in man , 1990, Neuroscience Letters.

[63]  Vincenzo Maffei,et al.  Visual gravitational motion and the vestibular system in humans , 2013, Front. Integr. Neurosci..

[64]  O. Grüsser,et al.  Is there a vestibular cortex? , 1998, Trends in Neurosciences.

[65]  M. Raichle,et al.  Stimulus rate determines regional brain blood flow in striate cortex , 1985, Annals of neurology.

[66]  Michael B. Miller,et al.  The principled control of false positives in neuroimaging. , 2009, Social cognitive and affective neuroscience.

[67]  T. Brandt,et al.  Sensory system interactions during simultaneous vestibular and visual stimulation in PET , 2002, Human brain mapping.

[68]  P. Haggard,et al.  Vestibular inputs modulate somatosensory cortical processing , 2012, Brain Structure and Function.

[69]  T. Brandt,et al.  Dominance for vestibular cortical function in the non-dominant hemisphere. , 2003, Cerebral cortex.

[70]  J. Haxby,et al.  Functional anatomy of pursuit eye movements in humans as revealed by fMRI. , 1999, Journal of neurophysiology.

[71]  Jeremy D. Schmahmann,et al.  Functional topography in the human cerebellum: A meta-analysis of neuroimaging studies , 2009, NeuroImage.

[72]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[73]  Martin Wiesmann,et al.  Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies , 2005, NeuroImage.

[74]  R. Ito,et al.  Cortical and subcortical vestibular response to caloric stimulation detected by functional magnetic resonance imaging. , 2001, Brain research. Cognitive brain research.

[75]  W. Bles,et al.  Differential effects of ambivalent visual-vestibular-somatosensory stimulation on the perception of self-motion , 1985, Behavioural Brain Research.

[76]  Brian N. Pasley,et al.  Analysis of oxygen metabolism implies a neural origin for the negative BOLD response in human visual cortex , 2007, NeuroImage.

[77]  T. Brandt,et al.  Multisensory cortical signal increases and decreases during vestibular galvanic stimulation (fMRI). , 2001, Journal of neurophysiology.

[78]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[79]  O. Braddick,et al.  Brain Areas Sensitive to Coherent Visual Motion , 2001, Perception.

[80]  L. Optican,et al.  Role of Cerebellum in Motion Perception and Vestibulo-ocular Reflex—Similarities and Disparities , 2013, The Cerebellum.

[81]  J. Driver,et al.  Multisensory Interplay Reveals Crossmodal Influences on ‘Sensory-Specific’ Brain Regions, Neural Responses, and Judgments , 2008, Neuron.

[82]  E. Macaluso,et al.  Multisensory spatial interactions: a window onto functional integration in the human brain , 2005, Trends in Neurosciences.

[83]  O. Grüsser,et al.  Cortico‐cortical connections and cytoarchitectonics of the primate vestibular cortex: A study in squirrel monkeys (Saimiri sciureus) , 1992, The Journal of comparative neurology.

[84]  Gereon R. Fink,et al.  Space Coding in Primate Posterior Parietal Cortex , 2001, NeuroImage.

[85]  T. Brandt,et al.  Object-motion detection affected by concurrent self-motion perception: Psychophysics of a new phenomenon , 1986, Behavioural Brain Research.

[86]  Dae-Shik Kim,et al.  Origin of Negative Blood Oxygenation Level—Dependent fMRI Signals , 2002, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[87]  O. Blanke,et al.  Body ownership and embodiment: Vestibular and multisensory mechanisms , 2008, Neurophysiologie Clinique/Clinical Neurophysiology.

[88]  Parashkev Nachev,et al.  The Neuroanatomical Correlates of Training-Related Perceptuo-Reflex Uncoupling in Dancers , 2013, Cerebral cortex.

[89]  G. Glover Deconvolution of Impulse Response in Event-Related BOLD fMRI1 , 1999, NeuroImage.