16-O-methylcafestol is present in ground roast Arabica coffees: Implications for authenticity testing

[1]  S. Mammi,et al.  NMR quantification of 16-O-methylcafestol and kahweol in Coffea canephora var. robusta beans from different geographical origins , 2017 .

[2]  E. K. Kemsley,et al.  Low-field 1H NMR spectroscopy for distinguishing between arabica and robusta ground roast coffees , 2017, Food chemistry.

[3]  M. Benassi,et al.  Diterpenes in Coffea canephora , 2016 .

[4]  Adriana Farah,et al.  Coffee Adulteration: More than Two Decades of Research , 2016, Critical reviews in analytical chemistry.

[5]  F. Thomas,et al.  Rapid approach to identify the presence of Arabica and Robusta species in coffee using 1H NMR spectroscopy. , 2015, Food chemistry.

[6]  S. Mammi,et al.  Rapid authentication of coffee blends and quantification of 16-O-methylcafestol in roasted coffee beans by nuclear magnetic resonance. , 2014, Journal of agricultural and food chemistry.

[7]  E. K. Kemsley,et al.  60 MHz 1H NMR spectroscopy for the analysis of edible oils , 2014, Trends in analytical chemistry : TRAC.

[8]  E. Bekele,et al.  ISSR fingerprinting of Coffea arabica throughout Ethiopia reveals high variability in wild populations and distinguishes them from landraces , 2014, Plant Systematics and Evolution.

[9]  E. Boselli,et al.  Authentication of Italian Espresso coffee blends through the GC peak ratio between kahweol and 16-O-methylcafestol. , 2012, Food chemistry.

[10]  Aaron P. Davis,et al.  The Impact of Climate Change on Indigenous Arabica Coffee (Coffea arabica): Predicting Future Trends and Identifying Priorities , 2012, PloS one.

[11]  M. Benassi,et al.  Discrimination of commercial roasted and ground coffees according to chemical composition , 2012 .

[12]  M. Fay,et al.  Growing coffee: Psilanthus (Rubiaceae) subsumed on the basis of molecular and morphological data; implications for the size, morphology, distribution and evolutionary history of Coffea , 2011 .

[13]  A. S. Franca,et al.  Physical characterization of non-defective and defective Arabica and Robusta coffees before and after roasting , 2009 .

[14]  P. Winterhalter,et al.  Isolation of coffee diterpenes by means of high-speed countercurrent chromatography. , 2009 .

[15]  E. Bekele,et al.  Characterization of Coffea chloroplast microsatellites and evidence for the recent divergence of C. arabica and C. eugenioides chloroplast genomes. , 2007, Genome.

[16]  R. Govaerts,et al.  An annotated taxonomic conspectus of the genus Coffea (Rubiaceae) , 2006 .

[17]  K. Speer,et al.  The lipid fraction of the coffee bean , 2006 .

[18]  E. Bekele,et al.  Inter-simple sequence repeat (ISSR) variation in forest coffee trees (Coffea arabica L.) populations from Ethiopia , 2005, Genetica.

[19]  J. Berthaud,et al.  Genetic diversity of wild coffee (Coffea arabica L.) using molecular markers , 2001, Euphytica.

[20]  C. Montagnon,et al.  Multivariate analysis of phenotypic diversity of Coffea arabica , 1996, Genetic Resources and Crop Evolution.

[21]  M. Combes,et al.  Genetic diversity for RAPD markers between cultivated and wild accessions of Coffea arabica , 2004, Euphytica.

[22]  E. Bekele,et al.  Genetic diversity of forest arabica coffee (Coffea arabica L.) in Ethiopia as revealed by random amplified polymorphic DNA (RAPD) analysis. , 2003, Hereditas.

[23]  L. Fay,et al.  Rapid and simultaneous analysis of 16-O-methylcafestol and sterols as markers for assessment of green coffee bean authenticity by on-line LC-GC , 2002 .

[24]  K. Speer,et al.  DITERPENES AND DITERPENE ESTERS IN COFFEE , 2001 .

[25]  M. Katan,et al.  Levels of Cafestol, Kahweol, and Related Diterpenoids in Wild Species of the Coffee Plant Coffea , 1997 .

[26]  P. Mischnick,et al.  16-O-Methylcafestol - ein neues Diterpen im Kaffee Entdeckung und Identifizierung , 1989 .

[27]  B. Pettitt Identification of the diterpene esters in Arabica and Canephora coffees , 1987 .