Suspensionskatalyse im Pfropfenströmungs‐Mikroreaktor – experimentelle und numerische Stofftransportbewertung

Pfropfenstromungs-Kapillarreaktoren bieten einen Ansatz zur zweiphasigen Suspensionskatalyse die eine einfachere Katalysatorruckgewinnung und Reduzierung der Partikelgrose ermoglicht, sofern eine ausreichende Stofftransportleistung durch die Zirkulationsstromung gewahrleistet wird. Experimentelle Messungen und ein dynamisches Modell zeigen, dass der Flussig/Fest-Stofftransport zunachst eine Limitierung darstellt und durch eine inhomogene Suspendierung gehemmt wird. Die Reduzierung der Katalysatorgrose hebt diese Limitierung jedoch auf, so dass die zweiphasige Suspensionskatalyse vielversprechend erscheint. Slug flow capillary reactors are well suited for two-phase suspension catalysis, which serves as catalyst carrier and permits facile catalyst recovery with smaller catalyst particles, as long as the internal circulation provides a sufficiently rapid liquid-solid mass transfer. A combination of experimental measurements and dynamic modeling revealed that an inhomogeneous suspension restricts the mass transfer performance. However, this limitation is more than compensated by reducing the catalyst particle size, making two-phase suspension catalysis a promising concept for heterogeneous catalysis in microreactors.

[1]  R. S. Mann,et al.  Isotopic ion-exchange studies in heteroionic systems , 1979 .

[2]  F. Sarrazin,et al.  Heterogeneous reaction with solid catalyst in droplet-flow millifluidic device , 2013 .

[3]  Yi Cheng,et al.  Experimental and numerical study of mixing behavior inside droplets in microchannels , 2013 .

[4]  Malcolm Mackley,et al.  The separation of immiscible liquid slugs within plastic microchannels using a metallic hydrophilic sidestream. , 2011, Lab on a chip.

[5]  Oliver E. Jensen,et al.  The motion of a viscous drop through a cylindrical tube , 2004, Journal of Fluid Mechanics.

[6]  David W. Agar,et al.  Liquid/Liquid Slug Flow Capillary Microreactor , 2011 .

[7]  Albert Renken,et al.  Gas–liquid and liquid–liquid mass transfer in microstructured reactors , 2011 .

[8]  J. van der Schaaf,et al.  Liquid-liquid slug flow separation in a slit shaped micro device , 2012 .

[9]  J. Köhler,et al.  Microsegmented Flow-Through Synthesis of Silver Nanoprisms with Exact Tunable Optical Properties , 2012 .

[10]  Andreas S. Bommarius,et al.  Biocatalysis: Fundamentals and Applications , 2004 .

[11]  B. Prasad,et al.  Segmented flow synthesis of Ag nanoparticles in spiral microreactor: Role of continuous and dispersed phase , 2012 .

[12]  Teruo Fujii,et al.  Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV. , 2007, Lab on a chip.

[13]  Ina Dittmar,et al.  Numerische Untersuchung einer Flüssig/flüssig‐Pfropfenströmung in einem Mikrokapillarreaktor , 2013 .

[14]  R. Guirardello,et al.  Application of the mass action law to describe ion exchange equilibrium in a fixed-bed column , 2011 .

[15]  Wangfeng Cai,et al.  Mass transfer behavior of liquid–liquid slug flow in circular cross-section microchannel , 2013 .

[16]  D. Agar,et al.  Slug Flow of Ionic Liquids in Capillary Microcontactors: Fluid Dynamic Intensification for Solvent Extraction , 2013 .

[17]  T. G. Smith,et al.  Film Diffusion-Controlled Kinetics in Binary Ion Exchange , 1964 .

[18]  H. Yoshida,et al.  Kinetics of ion exchange accompanied by neutralization reaction , 1988 .

[19]  H. Süße,et al.  μPIV-Analysis of Taylor flow in micro channels , 2008 .

[20]  D. Sherrington,et al.  PolyHipe: A new polymeric support for heterogeneous catalytic reactions: Kinetics of hydration of cyclohexene in two- and three-phase systems over a strongly acidic sulfonated polyhipe , 2000 .

[21]  C. Harland Ion exchange : theory and practice , 1994 .

[22]  B. Cornils Exciting Results from the Field of Homogeneous Two-Phase Catalysis , 1995 .

[23]  D. Agar,et al.  Hydrodynamic studies of liquid–liquid slug flows in circular microchannels , 2011 .

[24]  G K Kurup,et al.  Field-free particle focusing in microfluidic plugs. , 2012, Biomicrofluidics.

[25]  Karine Loubière,et al.  Experimental and numerical study of droplets hydrodynamics in microchannels , 2006 .

[26]  David W. Agar,et al.  Effective interfacial area for mass transfer in the liquid-liquid slug flow capillary microreactors , 2010 .

[27]  F. Helfferich Ion-Exchange Kinetics. V. Ion Exchange Accompanied by Reactions , 1965 .

[28]  V. G. Pangarkar,et al.  Particle-liquid mass transfer coefficient in two-/three-phase stirred tank reactors , 2002 .

[29]  David A Barrow,et al.  Liquid-liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows. , 2009, Lab on a chip.

[30]  D. Agar,et al.  Suspension catalysis in a liquid–liquid capillary microreactor , 2011 .

[31]  Leonid B Datsevich,et al.  Conventional Three-Phase Fixed-Bed Technologies: Analysis and Critique , 2012 .

[32]  P. Rohr,et al.  Continuous Micro Liquid‐Liquid Extraction , 2013 .

[33]  B. Cornils Bulk and fine chemicals via aqueous biphasic catalysis , 1999 .

[34]  B. Hahn-Hägerdal,et al.  Bioconversions in aqueous two-phase systems. , 1990, Enzyme and microbial technology.

[35]  M. A. Mendes-Tatsis,et al.  The prediction of Marangoni convection in binary liquid-liquid systems with added surfactants , 2001 .

[36]  Emanuel Carrilho,et al.  Capacitively coupled contactless conductivity detection on microfluidic systems—ten years of development , 2012 .

[37]  W. Wagner,et al.  The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use , 2002 .

[38]  J. Hagen Industrial Catalysis: A Practical Approach , 2005 .

[39]  B. Ohtani,et al.  Phase-Boundary Catalysis of Alkene Epoxidation with Aqueous Hydrogen Peroxide Using Amphiphilic Zeolite Particles Loaded with Titanium Oxide , 2001, Journal of Catalysis.

[40]  P. Kamer,et al.  Alternative approaches for the aqueous–organic biphasic hydroformylation of higher alkenes , 2013 .

[41]  B. Finlayson,et al.  Orthogonal collocation on finite elements , 1975 .

[42]  David W. Agar,et al.  Scale‐up of Capillary Extraction Equipment , 2011 .

[43]  David W. Agar,et al.  Liquid−Liquid Slug Flow in a Capillary: An Alternative to Suspended Drop or Film Contactors , 2007 .

[44]  J. Burns,et al.  The intensification of rapid reactions in multiphase systems using slug flow in capillaries. , 2001, Lab on a chip.

[45]  J. Aubin,et al.  Current methods for characterising mixing and flow in microchannels , 2010 .

[46]  P. Harriott Mass transfer to particles: Part I. Suspended in agitated tanks , 1962 .