Strategies for dealing with incomplete information in the modeling of molecular interaction networks

Modelers of molecular interaction networks encounter the paradoxical situation that while large amounts of data are available, these are often insufficient for the formulation and analysis of mathematical models describing the network dynamics. In particular, information on the reaction mechanisms and numerical values of kinetic parameters are usually not available for all but a few well-studied model systems. In this article we review two strategies that have been proposed for dealing with incomplete information in the study of molecular interaction networks: parameter sensitivity analysis and model simplification. These strategies are based on the biologically justified intuition that essential properties of the system dynamics are robust against moderate changes in the value of kinetic parameters or even in the rate laws describing the interactions. Although advanced measurement techniques can be expected to relieve the problem of incomplete information to some extent, the strategies discussed in this article will retain their interest as tools providing an initial characterization of essential properties of the network dynamics.

[1]  H. Othmer,et al.  The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster. , 2003, Journal of theoretical biology.

[2]  G. Casari,et al.  From molecular networks to qualitative cell behavior , 2005, FEBS letters.

[3]  Hidde de Jong,et al.  Genetic Network Analyzer: qualitative simulation of genetic regulatory networks , 2003, Bioinform..

[4]  K. F. Tipton,et al.  Biochemical systems analysis: A study of function and design in molecular biology , 1978 .

[5]  S. Kauffman Metabolic stability and epigenesis in randomly constructed genetic nets. , 1969, Journal of theoretical biology.

[6]  K. Hossner,et al.  Cellular and molecular biology. , 2005 .

[7]  J. Gouzé,et al.  A class of piecewise linear differential equations arising in biological models , 2002 .

[8]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[9]  L. Glass,et al.  The logical analysis of continuous, non-linear biochemical control networks. , 1973, Journal of theoretical biology.

[10]  J. Doyle,et al.  Robust perfect adaptation in bacterial chemotaxis through integral feedback control. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[12]  Madalena Chaves,et al.  Robustness and fragility of Boolean models for genetic regulatory networks. , 2005, Journal of theoretical biology.

[13]  D. Schneider,et al.  Qualitative simulation of the carbon starvation response in Escherichia coli. , 2006, Bio Systems.

[14]  Vipul Periwal,et al.  System Modeling in Cellular Biology: From Concepts to Nuts and Bolts , 2006 .

[15]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[16]  Stefan Bornholdt,et al.  Less Is More in Modeling Large Genetic Networks , 2005, Science.

[17]  J. Ferrell,et al.  Interlinked Fast and Slow Positive Feedback Loops Drive Reliable Cell Decisions , 2005, Science.

[18]  J. Lambert Numerical Methods for Ordinary Differential Equations , 1991 .

[19]  Eduardo D. Sontag,et al.  Molecular Systems Biology and Control , 2005, Eur. J. Control.

[20]  H. Kitano,et al.  Robust oscillations within the interlocked feedback model of Drosophila circadian rhythm. , 2001, Journal of theoretical biology.

[21]  Hiroaki Kitano,et al.  Biological robustness , 2008, Nature Reviews Genetics.

[22]  Tom Misteli,et al.  Kinetic modelling approaches to in vivo imaging , 2001, Nature Reviews Molecular Cell Biology.

[23]  Daniel T. Gillespie,et al.  Numerical Simulation for Biochemical Kinetics , 2008 .

[24]  Jason A. Papin,et al.  Comparison of network-based pathway analysis methods. , 2004, Trends in biotechnology.

[25]  Andrew W. Murray,et al.  The Ups and Downs of Modeling the Cell Cycle , 2004, Current Biology.

[26]  D Thieffry,et al.  GINsim: a software suite for the qualitative modelling, simulation and analysis of regulatory networks. , 2006, Bio Systems.

[27]  T. Mestl,et al.  A mathematical framework for describing and analysing gene regulatory networks. , 1995, Journal of theoretical biology.

[28]  R. Thomas,et al.  Boolean formalization of genetic control circuits. , 1973, Journal of theoretical biology.

[29]  U. Alon,et al.  Assigning numbers to the arrows: Parameterizing a gene regulation network by using accurate expression kinetics , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[30]  C. Tomlin,et al.  Symbolic reachable set computation of piecewise affine hybrid automata and its application to biological modelling: Delta-Notch protein signalling. , 2004, Systems biology.

[31]  J. Arnold,et al.  An ensemble method for identifying regulatory circuits with special reference to the qa gene cluster of Neurospora crassa , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  P. Swain,et al.  Gene Regulation at the Single-Cell Level , 2005, Science.

[33]  Pablo A. Iglesias,et al.  Quantifying robustness of biochemical network models , 2002, BMC Bioinformatics.

[34]  M. Savageau,et al.  Parameter Sensitivity as a Criterion for Evaluating and Comparing the Performance of Biochemical Systems , 1971, Nature.

[35]  J. Stelling,et al.  Robustness of Cellular Functions , 2004, Cell.

[36]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[37]  J. Doyle,et al.  Robustness as a measure of plausibility in models of biochemical networks. , 2002, Journal of theoretical biology.

[38]  B. Palsson,et al.  Metabolic dynamics in the human red cell. Part I--A comprehensive kinetic model. , 1989, Journal of theoretical biology.

[39]  Andreas Kremling,et al.  A Quantitative Approach to Catabolite Repression in Escherichia coli* , 2006, Journal of Biological Chemistry.

[40]  Nicholas T Ingolia,et al.  Topology and Robustness in the Drosophila Segment Polarity Network , 2004, PLoS biology.

[41]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[42]  H. Kitano Systems Biology: A Brief Overview , 2002, Science.

[43]  Bor-Sen Chen,et al.  A new measure of the robustness of biochemical networks , 2005, Bioinform..

[44]  J. Heijnen Approximative kinetic formats used in metabolic network modeling , 2005, Biotechnology and bioengineering.

[45]  Elisabeth Pécou,et al.  Splitting the dynamics of large biochemical interaction networks. , 2005, Journal of theoretical biology.

[46]  A. Goldbeter,et al.  Toward a detailed computational model for the mammalian circadian clock , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J. Stelling,et al.  Robustness properties of circadian clock architectures. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. Butcher Numerical methods for ordinary differential equations , 2003 .

[49]  D. Gillespie Exact Stochastic Simulation of Coupled Chemical Reactions , 1977 .

[50]  J. W. Little,et al.  Robustness of a gene regulatory circuit , 1999, The EMBO journal.

[51]  L. Glass,et al.  Symbolic dynamics and computation in model gene networks. , 2001, Chaos.

[52]  S. Leibler,et al.  Robustness in simple biochemical networks , 1997, Nature.

[53]  J. Monod,et al.  Teleonomic mechanisms in cellular metabolism, growth, and differentiation. , 1961, Cold Spring Harbor symposia on quantitative biology.

[54]  J E Ferrell,et al.  The biochemical basis of an all-or-none cell fate switch in Xenopus oocytes. , 1998, Science.

[55]  René Thomas Regulatory networks seen as asynchronous automata: A logical description , 1991 .

[56]  U. Alon,et al.  Robustness in bacterial chemotaxis , 2022 .

[57]  Denis Thieffry,et al.  Segmenting the fly embryo: a logical analysis of the pair-rule cross-regulatory module. , 2003, Journal of theoretical biology.

[58]  E. Dougherty,et al.  Genomic Signal Processing and Statistics , 2005 .

[59]  Martin Fussenegger,et al.  Modeling the Quorum Sensing Regulatory Network of Human‐Pathogenic Pseudomonas aeruginosa , 2004, Biotechnology progress.

[60]  J. Collins,et al.  Construction of a genetic toggle switch in Escherichia coli , 2000, Nature.

[61]  J. Monod,et al.  General Conclusions: Teleonomic Mechanisms in Cellular Metabolism, Growth, and Differentiation , 1978 .

[62]  L. Glass,et al.  Understanding Nonlinear Dynamics , 1995 .