The Method of Virtual Components in the Multivariate Setting

We describe the so-called method of virtual components for tight wavelet framelets to increase their approximation order and vanishing moments in the multivariate setting. Two examples of the virtual components for tight wavelet frames based on bivariate box splines on three or four direction mesh are given. As a byproduct, a new construction of tight wavelet frames based on box splines under the quincunx dilation matrix is presented.

[1]  B. Han,et al.  Pairs of Dual Wavelet Frames from Any Two Refinable Functions , 2004 .

[2]  I. Daubechies,et al.  The Canonical Dual Frame of a Wavelet Frame , 2002 .

[3]  Zuowei Shen Affine systems in L 2 ( IR d ) : the analysis of the analysis operator , 1995 .

[4]  M. Lai,et al.  Method of virtual components for constructing redundant filter banks and wavelet frames , 2007 .

[5]  Charles K. Chui,et al.  Construction of Multivariate Tight Frames via Kronecker Products , 2001 .

[6]  Martin Vetterli,et al.  Gröbner Bases and Multidimensional FIR Multirate Systems , 1997, Multidimens. Syst. Signal Process..

[7]  B. Han Dual multiwavelet frames with high balancing order and compact fast frame transform , 2009 .

[8]  C. Chui,et al.  Compactly supported tight frames associated with refinable functions , 2000 .

[9]  I. Daubechies,et al.  Framelets: MRA-based constructions of wavelet frames☆☆☆ , 2003 .

[10]  Ming-Jun Lai,et al.  Factorization of multivariate positive Laurent polynomials , 2006, J. Approx. Theory.

[11]  A. Ron,et al.  Affine systems inL2 (ℝd) II: Dual systems , 1997 .

[12]  B. Sturmfels,et al.  Algorithms for the Quillen-Suslin theorem , 1992 .

[13]  Zuowei Shen,et al.  Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .

[14]  COMPACTLY SUPPORTED TIGHT AFFINE , 1997 .

[15]  B. Han DUAL MULTIWAVELET FRAMES WITH HIGH BALANCING ORDER AND COMPACT FAST FRAME TRANSFORM , 2008 .

[16]  Ming-Jun Lai,et al.  Construction of multivariate compactly supported tight wavelet frames , 2006 .

[17]  Yuesheng Xu,et al.  On the matrix completion problem for multivariate filter bank construction , 2007, Adv. Comput. Math..

[18]  M. Ehler,et al.  Applied and Computational Harmonic Analysis , 2015 .

[19]  A. Ron,et al.  Affine Systems inL2(Rd): The Analysis of the Analysis Operator , 1997 .

[20]  Andrew G. Glen,et al.  APPL , 2001 .

[21]  Charles K. Chui,et al.  A multivariate analog of Marsden's identity and a quasi-interpolation scheme , 1987 .

[22]  K. Lau Advances in wavelets , 1999 .

[23]  C. Chui,et al.  Compactly supported tight and sibling frames with maximum vanishing moments , 2001 .